Low Noise Pseudomorphic HEMT in a Surface Mount Plastic Package

Technical Data

Features

- Low Noise Figure
- Excellent Uniformity in Product Specifications
- $\mathbf{1 6 0 0}$ micron Gate Width
- Low Cost Surface Mount Small Plastic Package SOT-343 (4 lead SC-70)
- Tape-and-Reel Packaging Option Available

Specifications

$1.9 \mathrm{GHz} ; 4 \mathrm{~V}, 80 \mathrm{~mA}$ (Typ.)

- 0.5 dB Noise Figure
- 15 dB Associated Gain
- 22 dBm Output Power at 1 dB Gain Compression
- 33.5 dBm Output $3^{\text {rd }}$ Order Intercept

Applications

- Tower Mounted Amplifier, Low Noise Amplifier and Driver Amplifier for GSM/ TDMA/CDMA Base Stations
- LNA for Wireless LAN, WLL/ RLL and MMDS Applications
- General Purpose Discrete PHEMT for other Ultra Low Noise Applications

Surface Mount Package

 SOT-343

Pin Connections and

Package Marking
"3P" = Device code
" x " = Date code character. A new character is assigned for each month, year.

Note: Top View. Package marking provides orientation and identification.

Description

Agilent's ATF-33143 is a high dynamic range, low noise PHEMT housed in a 4-lead SC-70 (SOT-343) surface mount plastic package.

Based on its featured performance, ATF-33143 is ideal for the first or second stage of base station LNA due to the excellent combination of low noise figure and enhanced linearity ${ }^{[1]}$. The device is also suitable for applications in Wireless LAN, WLL/RLL, MMDS, and other systems requiring super low noise figure with good intercept in the 450 MHz to 10 GHz frequency range.

Note:

1. From the same PHEMT FET family, the smaller geometry ATF-34143 may also be considered for the higher gain performance, particularly in the higher frequency band (1.8 GHz and up).

ATF-33143 Absolute Maximum Ratings ${ }^{[1]}$

Symbol	Parameter	Units	Absolute Maximum
V_{DS}	Drain - Source Voltage ${ }^{[2]}$	V	5.5
$\mathrm{V}_{\text {GS }}$	Gate - Source Voltage ${ }^{[2]}$	V	-5
V_{GD}	Gate Drain Voltage ${ }^{[2]}$	V	-5
I_{DS}	Drain Current ${ }^{[2]}$	mA	$\mathrm{I}_{\text {dss }}{ }^{[3]}$
$\mathrm{P}_{\text {diss }}$	Total Power Dissipation ${ }^{[4]}$	mW	600
$\mathrm{P}_{\text {in max }}$	RF Input Power	dBm	20
T_{CH}	Channel Temperature ${ }^{[5]}$	${ }^{\circ} \mathrm{C}$	160
$\mathrm{T}_{\text {STG }}$	Storage Temperature	${ }^{\circ} \mathrm{C}$	-65 to 160
$\theta_{\text {jc }}$	Thermal Resistance ${ }^{[6]}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$	145

Notes:

1. Operation of this device above any one of these parameters may cause permanent damage.
2. Assumes DC quiesent conditions.
3. $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$
4. Source lead temperature is $25^{\circ} \mathrm{C}$. Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{T}_{\mathrm{L}}>60^{\circ} \mathrm{C}$.
5. Please refer to failure rates in reliability section to assess the reliability impact of running devices above a channel temperature of $140^{\circ} \mathrm{C}$.
6. Thermal resistance measured using $150^{\circ} \mathrm{C}$ Liquid Crystal Measurement method.

Product Consistency Distribution Charts ${ }^{[8,9]}$

Figure 1. Typical Pulsed I-V Curves ${ }^{[7]}$. $\left(\mathrm{V}_{\mathrm{GS}}=-0.2 \mathrm{~V}\right.$ per step)

Figure 3. OIP3 @ $2 \mathrm{GHz}, \mathbf{4} \mathrm{V}, 80 \mathrm{~mA}$. LSL=30.0, Nominal=33.3, USL=37.0

Figure 2. NF @ $2 \mathrm{GHz}, 4 \mathrm{~V}, 80 \mathrm{~mA}$. $\mathrm{LSL}=0.2$, Nominal $=0.53$, $\mathrm{USL}=0.8$

Figure 4. Gain @ $2 \mathbf{G H z}, 4 \mathrm{~V}, 80 \mathrm{~mA}$.
$\mathrm{LSL}=13.5$, Nominal $=14.8$, $\mathrm{USL}=16.5$

Notes:

7. Under large signal conditions, V_{GS} may swing positive and the drain current may exceed $\mathrm{I}_{\text {dss. }}$. These conditions are acceptable as long as the maximum $\mathrm{P}_{\text {diss }}$ and $P_{\text {in max }}$ ratings are not exceeded.
8. Distribution data sample size is 450 samples taken from 9 different wafers.

Future wafers allocated to this product may have nominal values anywhere within the upper and lower spec limits.
9. Measurements made on production test board. This circuit represents a trade-off between an optimal noise match and a realizeable match based on production
test requirements. Circuit losses have been de-embedded from actual measurements.
10 . The probability of a parameter being between $\pm 1 \sigma$ is 68.3%, between $\pm 2 \sigma$ is 95.4% and between $\pm 3 \sigma$ is 99.7%.

ATF-33143 DC Electrical Specifications
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{RF}$ parameters measured in a test circuit for a typical device

Symbol	Parameters and Test Conditions			Units	Min.	Typ. ${ }^{[2]}$	Max.
$\mathrm{I}_{\text {dss }}{ }^{[1]}$	Saturated Drain Current		$\mathrm{V}_{\mathrm{DS}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	mA	175	237	305
$\mathrm{V}_{\mathrm{P}}{ }^{[1]}$	Pinchoff Voltage		$=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=10 \%$ of $\mathrm{I}_{\mathrm{dss}}$	V	-0.65	-0.5	-0.35
I_{d}	Quiescent Bias Current		$\mathrm{V}_{\mathrm{GS}}=-0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=4 \mathrm{~V}$	mA	-	80	-
$\mathrm{gm}^{[1]}$	Transconductance		$\mathrm{V}_{\mathrm{DS}}=1.5 \mathrm{~V}, \mathrm{gm}_{\mathrm{m}}=\mathrm{I}_{\text {dss }} / \mathrm{V}_{\mathrm{P}}$	mmho	360	440	-
$\mathrm{I}_{\text {GDO }}$	Gate to Drain Leakage Current		$\mathrm{V}_{\mathrm{GD}}=5 \mathrm{~V}$	$\mu \mathrm{A}$			1000
$\mathrm{I}_{\text {gss }}$	Gate Leakage Current		$\mathrm{V}_{\mathrm{GD}}=\mathrm{V}_{\mathrm{GS}}=-4 \mathrm{~V}$	$\mu \mathrm{A}$	-	42	600
NF	Noise Figure	$\mathrm{f}=2 \mathrm{GHz}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=80 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=60 \mathrm{~mA} \\ & \hline \end{aligned}$	dB		$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	0.8
		$\mathrm{f}=900 \mathrm{MHz}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=80 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=60 \mathrm{~mA} \end{aligned}$	dB		$\begin{aligned} & \hline 0.4 \\ & 0.4 \end{aligned}$	
G_{a}	Associated Gain ${ }^{[3]}$	$\mathrm{f}=2 \mathrm{GHz}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=80 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=60 \mathrm{~mA} \end{aligned}$	dB	13.5	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	16.5
		$\mathrm{f}=900 \mathrm{MHz}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=80 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=60 \mathrm{~mA} \end{aligned}$	dB		$\begin{aligned} & 21 \\ & 21 \end{aligned}$	
OIP3	Output $3^{\text {rd }}$ Order Intercept Point ${ }^{[3]}$	$\mathrm{f}=2 \mathrm{GHz}$ 5 dBm Pout/Tone	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=80 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=60 \mathrm{~mA} \\ & \hline \end{aligned}$	dBm	30	$\begin{gathered} \hline 33.5 \\ 32 \end{gathered}$	
		$\mathrm{f}=900 \mathrm{MHz}$ 5 dBm Pout/Tone	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=80 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=60 \mathrm{~mA} \end{aligned}$	dBm		$\begin{gathered} 32.5 \\ 31 \end{gathered}$	
$\mathrm{P}_{1 \mathrm{~dB}}$	1 dB Compressed Compressed Power ${ }^{[3]}$	$\mathrm{f}=2 \mathrm{GHz}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=80 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=60 \mathrm{~mA} \end{aligned}$	dBm		$\begin{aligned} & 22 \\ & 21 \end{aligned}$	
		$\mathrm{f}=900 \mathrm{MHz}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=80 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=60 \mathrm{~mA} \end{aligned}$	dBm		$\begin{aligned} & 21 \\ & 20 \end{aligned}$	

Notes:

1. Guaranteed at wafer probe level.
2. Typical value determined from a sample size of 450 parts from 9 wafers.
3. Measurements obtained using production test board described in Figure 5.

Figure 5. Block diagram of 2 GHz production test board used for Noise Figure, Associated Gain, $\mathrm{P}_{1 \mathrm{~dB}}$, and OIP3 measurements. This circuit represents a trade-off between an optimal noise match and a realizable match based on production test requirements. Circuit losses have been de-embedded from actual measurements.

ATF-33143 Typical Performance Curves

Figure 6. OIP3, IIP3 vs. Bias ${ }^{[1]}$ at 2 GHz .

Figure 8. $\mathbf{P}_{1 d B}$ vs. Bias ${ }^{[1,2]}$ at $2 \mathbf{G H z}$.

Figure 10. $\mathbf{N F}$ and G_{a} vs. Bias ${ }^{[1]}$ at 2 GHz .

Figure 7. OIP3, IIP3 vs. Bias ${ }^{[1]}$ at 900 MHz .

Figure 9. $\mathrm{P}_{1 \mathrm{~dB}}$ vs. Bias ${ }^{[1,2]}$ Tuned for $\mathbf{N F}$ @ 4V, 80 mA at 900 MHz .

Figure 11. NF and G_{a} vs. Bias ${ }^{[1]}$ at 900 MHz .

Notes:

1. Measurements made on a fixed tuned production test board that was tuned for optimal gain match with reasonable noise figure at 4 V 80 mA bias. This circuit represents a trade-off between optimal noise match, maximum gain match and a realizable match based on production test board requirements. Circuit losses have been de-embedded from actual measurements.
2. Quiescent drain current, $\mathrm{I}_{\mathrm{DSQ}}$, is set with zero RF drive applied. As $\mathrm{P}_{1 \mathrm{~dB}}$ is approached, the drain current may increase or decrease depending on frequency and dc bias point. At lower values of $\mathrm{I}_{\mathrm{DSQ}}$ the device is running closer to class B as power output approaches $P_{1 d B}$. This results in higher $P_{1 d B}$ and higher PAE (power added efficiency) when compared to a device that is driven by a constant current source as is typically done with active biasing.

ATF-33143 Typical Performance Curves, continued

Figure 12. $\mathrm{F}_{\text {min }}$ vs. Frequency and Current at 4V.

Figure 14. $F_{\min }$ and G_{a} vs. Frequency and Temp at $V_{D S}=4 V, I_{D S}=80 \mathrm{~mA}$.

Figure 16. OIP3, $\mathrm{P}_{1 \mathrm{~dB}}, \mathrm{NF}$ and Gain vs. Bias ${ }^{[1,2]}$ at 3.9 GHz.

Figure 13. Associated Gain vs. Frequency and Current at 4V.

Figure 15. $\mathrm{P}_{1 \mathrm{~dB}}$, OIP3 vs. Frequency and $T e m p$ at $V_{D S}=4 V, I_{D S}=80 \mathrm{~mA}$.

Figure 17. OIP3, $\mathrm{P}_{1 \mathrm{~dB}}$, NF and Gain vs. Bias ${ }^{[1,2]}$ at 5.8 GHz.

Notes:

1. Measurements made on a fixed tuned test fixture that was tuned for noise figure at 4 V 80 mA bias. This circuit represents a trade-off between optimal noise match, maximum gain match and a realizable match based on production test requirements. Circuit losses have been de-embedded from actual measurements.
2. Quiescent drain current, $\mathrm{I}_{\mathrm{DSQ}}$, is set with zero RF drive applied. As $\mathrm{P}_{1 \mathrm{~dB}}$ is approached, the drain current may increase or decrease depending on frequency and dc bias point. At lower values of $\mathrm{I}_{\mathrm{dsq}}$ the device is running closer to class B as power output approaches $P_{1 d B}$. This results in higher $P_{1 d B}$ and higher PAE (power added efficiency) when compared to a device that is driven by a constant current source as is typically done with active biasing.

ATF-33143 Typical Performance Curves, continued

Figure 18. $\mathrm{P}_{1 \mathrm{~dB}}$ vs. $\mathrm{I}_{\text {DS }}$ Active Bias ${ }^{[1]}$
Tuned for NF @ 4V, 80 mA at 2 GHz .

Figure 19. $\mathrm{P}_{1 \mathrm{~dB}}$ vs. I_{DS} Active Bias ${ }^{[1]}$ Tuned for NF @ 4V, 80 mA at 900 MHz .

Note:

1. Measurements made on a fixed tuned test board that was tuned for optimal gain match with reasonable noise figure at 4 V 80 mA bias. This circuit represents a trade-off between an optimal noise match, maximum gain match and a realizable match based on production test board requirements. Circuit losses have been de-embedded from actual measurements.

ATF-33143 Power Parameters Tuned for $\operatorname{Max} \mathbf{P}_{1 d B}, \mathrm{~V}_{\mathrm{DS}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{DSQ}}=80 \mathrm{~mA}$

Freq $(\mathbf{G H z})$	$\mathbf{P}_{\mathbf{1 d B}}$ $(\mathbf{d B m})$	$\mathbf{I}_{\mathbf{d}}$ $(\mathbf{m A})$	$\mathbf{G}_{\mathbf{1 d B}}$ $(\mathbf{d B})$	$\mathbf{P A E}_{\mathbf{1 d B}}$ $(\%)$	$\mathbf{P}_{\mathbf{3 d B}}$ $(\mathbf{d B m})$	$\mathbf{I}_{\mathbf{d}}$ $(\mathbf{m A})$	$\mathbf{P A E}_{\mathbf{3 d B}}$ $(\%)$	Out_mag $(\mathbf{M a g})$.	O Out_ang $\left({ }^{\circ}\right)$
0.9	20.7	89	23.2	33	23.2	102	51	0.39	160
1.5	21.2	91	20.7	36	23.8	116	51	0.43	165
1.8	21.1	80	19.2	40	23.0	94	52	0.43	170
2.0	21.6	81	18.1	44	23.2	89	57	0.42	174
4.0	23.0	97	11.9	48	24.6	135	48	0.40	-150
6.0	24.0	130	5.9	36	25.2	136	36	0.37	-124

Figure 20. Swept Power Tuned for
$\operatorname{Max} \mathrm{P}_{1 \mathrm{~dB}}$
$V_{D S}=4 V, I_{D S Q}=80 \mathrm{~mA}, 2 \mathrm{GHz}$.

Notes:

1. Measurements made on ATN LP1 power load pull system.
2. Quicescent drain current, $\mathrm{I}_{\mathrm{DSQ}}$, is set with zero RF drive applied. As $\mathrm{P}_{1 \mathrm{~dB}}$ is approached, the drain current may increase or decrease depending on frequency and dc bias point. At lower values of $\mathrm{I}_{\mathrm{DSQ}}$ the device is running closer to class B as power output approaches $P_{1 d B}$. This results in higher $\mathrm{P}_{1 \mathrm{~dB}}$ and higher PAE (power added efficiency) when compared to a device that is driven by a constant current source as is typically done with active biasing.
3. PAE $(\%)=\left(\left(\mathrm{P}_{\mathrm{out}}-\mathrm{P}_{\text {in }}\right) / \mathrm{P}_{\mathrm{dc}}\right) \mathrm{X} 100$
4. Gamma out is the reflection coefficient of the matching circuit presented to the output of the device.

ATF-33143 Typical Scattering Parameters, $\mathrm{V}_{\mathrm{DS}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=60 \mathrm{~mA}$

Freq. (GHz)	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$				$\mathbf{S}_{\mathbf{1 2}}$			$\mathbf{S}_{\mathbf{2 2}}$	
Mag.	Ang.	$\mathbf{d B}$	Mag.	Ang.	$\mathbf{d B}$	Mag.	Ang.	Mag.	Ang.	(dB)	
0.5	0.86	-75.60	23.20	14.45	132.90	-28.18	0.039	54.80	0.26	-118.50	25.69
0.8	0.77	-115.00	20.44	10.53	109.80	-25.35	0.054	42.20	0.34	-150.00	22.90
1.0	0.76	-122.50	19.80	9.77	105.30	-25.04	0.056	40.20	0.35	-155.50	22.42
1.5	0.73	-151.80	16.97	7.06	87.50	-23.61	0.066	33.20	0.39	-176.10	20.29
1.8	0.72	-164.60	15.54	5.99	79.20	-22.97	0.071	30.60	0.41	175.00	19.26
2.0	0.72	-171.80	14.67	5.41	74.20	-22.73	0.073	28.90	0.42	169.80	18.70
2.5	0.72	171.00	12.79	4.36	62.70	-21.94	0.080	25.10	0.45	160.60	17.36
3.0	0.73	158.20	11.18	3.62	53.00	-21.31	0.086	21.60	0.47	152.70	16.25
4.0	0.74	136.50	8.76	2.74	35.20	-20.00	0.100	13.70	0.49	139.90	13.71
5.0	0.75	117.00	6.99	2.24	17.50	-18.86	0.114	3.40	0.50	125.70	11.59
6.0	0.77	98.00	5.47	1.88	-1.00	-17.99	0.126	-8.90	0.51	109.10	10.07
7.0	0.79	80.20	3.94	1.57	-19.00	-17.52	0.133	-22.30	0.54	91.60	8.86
8.0	0.82	64.70	2.45	1.33	-34.90	-17.39	0.135	-33.60	0.57	75.90	7.74
9.0	0.83	50.60	1.27	1.16	-49.10	-17.08	0.140	-43.40	0.60	63.70	6.97
10.0	0.86	36.60	0.37	1.04	-64.30	-16.54	0.149	-55.20	0.63	52.00	6.86
11.0	0.88	21.80	-0.72	0.92	-80.40	-16.48	0.150	-68.40	0.66	38.50	6.52
12.0	0.90	7.50	-1.97	0.80	-96.20	-16.71	0.146	-81.10	0.70	22.50	6.13
13.0	0.91	-4.80	-3.45	0.67	-110.80	-17.27	0.137	-92.90	0.73	6.70	4.98
14.0	0.91	-15.40	-4.69	0.58	-122.80	-17.65	0.131	-101.60	0.76	-5.20	4.22
15.0	0.92	-27.30	-5.70	0.52	-135.40	-17.79	0.129	-111.60	0.79	-15.20	3.89
16.0	0.93	-40.40	-6.52	0.47	-148.30	-17.72	0.130	-122.20	0.81	-25.10	3.77
17.0	0.94	-52.20	-7.51	0.42	-162.10	-17.92	0.127	-134.70	0.82	-37.30	3.48
18.0	0.93	-61.20	-8.78	0.36	-172.80	-18.56	0.118	-143.30	0.84	-49.20	2.17

ATF-33143 Typical Noise Parameters
$\mathrm{V}_{\mathrm{DS}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=60 \mathrm{~mA}$

Freq. $\mathbf{G H z}$	$\underset{\text { (B }}{\underset{\text { min }}{ }}$	$\Gamma_{\text {opt }}$		$\mathbf{R}_{\mathbf{n} / 50}$	$\begin{gathered} \mathbf{G}_{\mathrm{a}} \\ \mathbf{d B} \end{gathered}$
		Mag.	Ang.		
0.5	0.29	0.42	31.40	0.080	25.91
0.9	0.33	0.33	44.70	0.070	21.80
1.0	0.34	0.32	48.00	0.070	21.00
1.5	0.38	0.26	71.90	0.060	18.14
1.8	0.39	0.22	94.00	0.050	16.96
2.0	0.42	0.22	109.70	0.046	16.29
2.5	0.47	0.25	149.40	0.030	14.95
3.0	0.51	0.29	166.80	0.030	13.58
4.0	0.63	0.39	-160.60	0.040	11.74
5.0	0.72	0.46	-135.30	0.060	10.36
6.0	0.82	0.51	-112.40	0.110	9.17
7.0	0.93	0.57	-90.90	0.210	8.18
8.0	1.03	0.61	-71.80	0.370	7.19
9.0	1.13	0.66	-55.50	0.550	6.56
10.0	1.22	0.69	-41.80	0.720	6.29

Figure 21. MSG/MAG and $\left|S_{21}\right|^{2}$ vs. Frequency at 4V, 60 mA .

Notes:

1. The $\mathrm{F}_{\min }$ values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATF NP5 test system. From these measurements a true $\mathrm{F}_{\text {min }}$ is calculated. Refer to the noise parameter application section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point.

ATF-33143 Typical Scattering Parameters, $\mathrm{V}_{\mathrm{DS}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=80 \mathrm{~mA}$

Freq. (GHz)	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$				$\mathbf{S}_{\mathbf{1 2}}$			$\mathbf{S}_{\mathbf{2 2}}$	
Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.	(dB)	
0.5	0.86	-76.90	23.48	14.93	132.10	-28.64	0.037	55.40	0.26	-126.60	26.06
0.9	0.77	-115.90	20.64	10.77	109.10	-25.85	0.051	43.90	0.34	-155.50	23.25
1.0	0.76	-123.20	20.00	10.00	104.80	-25.51	0.053	42.10	0.35	-160.50	22.76
1.5	0.72	-151.70	17.13	7.18	87.40	-24.01	0.063	36.00	0.39	-180.00	20.57
2.0	0.72	-171.10	14.82	5.51	74.30	-22.97	0.071	32.10	0.43	166.60	18.90
2.5	0.72	170.10	12.96	4.45	62.60	-22.27	0.077	28.10	0.45	158.70	17.62
3.0	0.73	157.40	11.36	3.70	52.90	-21.51	0.084	24.60	0.47	151.20	16.44
4.0	0.74	135.90	8.92	2.79	35.40	-20.09	0.099	16.40	0.49	138.70	13.56
5.0	0.75	116.60	7.15	2.28	17.70	-18.86	0.114	5.70	0.50	124.70	11.64
6.0	0.77	97.60	5.63	1.91	-0.70	-17.99	0.126	-6.90	0.52	108.30	10.14
7.0	0.79	80.00	4.09	1.60	-18.60	-17.52	0.133	-20.60	0.54	91.00	8.97
8.0	0.82	64.50	2.61	1.35	-34.40	-17.33	0.136	-32.00	0.57	75.30	7.86
9.0	0.84	50.50	1.42	1.18	-48.60	-17.02	0.141	-42.10	0.61	63.10	7.10
10.0	0.86	36.40	0.52	1.06	-63.70	-16.48	0.150	-54.00	0.64	51.50	6.98
11.0	0.88	21.60	-0.57	0.94	-79.80	-16.42	0.151	-67.30	0.67	38.00	6.65
12.0	0.90	7.40	-1.81	0.81	-95.50	-16.59	0.148	-80.20	0.71	22.00	6.29
13.0	0.91	-4.90	-3.30	0.68	-110.00	-17.20	0.138	-92.00	0.74	6.40	5.08
14.0	0.91	-15.50	-4.54	0.59	-122.00	-17.59	0.132	-100.80	0.76	-5.60	4.34
15.0	0.92	-27.40	-5.51	0.53	-134.50	-17.65	0.131	-110.80	0.79	-15.50	3.99
16.0	0.93	-40.50	-6.34	0.48	-147.40	-17.65	0.131	-121.50	0.81	-25.40	3.92
17.0	0.94	-52.30	-7.33	0.43	-161.20	-17.86	0.128	-134.00	0.82	-37.60	3.62
18.0	0.93	-61.30	-8.61	0.37	-171.90	-18.49	0.119	-142.90	0.84	-49.50	2.30

ATF-33143 Typical Noise Parameters
$\mathrm{V}_{\mathrm{DS}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=80 \mathrm{~mA}$

Freq. GHz	$\mathbf{F}_{\text {min }}$ $\mathbf{d B}$	$\Gamma_{\text {Mag. }}$ Mopt $^{\text {Mng. }}$		$\mathbf{R}_{\mathbf{n / 5 0}}$	$\mathbf{G}_{\mathbf{a}}$ $\mathbf{d B}$
0.5	0.30	0.40	28.20	0.080	25.77
0.9	0.35	0.31	44.10	0.070	21.91
1.0	0.36	0.30	47.40	0.070	21.14
1.5	0.40	0.23	79.10	0.050	18.46
2.0	0.46	0.22	117.00	0.050	16.56
2.5	0.52	0.26	157.70	0.040	15.23
3.0	0.58	0.29	171.10	0.040	13.79
4.0	0.69	0.39	-157.20	0.044	11.92
5.0	0.80	0.46	-132.40	0.070	10.53
6.0	0.90	0.52	-109.40	0.130	9.37
7.0	1.02	0.57	-88.80	0.250	8.33
8.0	1.12	0.63	-70.50	0.420	7.41
9.0	1.21	0.66	-54.10	0.630	6.70
10.0	1.32	0.76	-40.40	0.830	6.69

Figure 22. MSG/MAG and $\left|S_{21}\right|^{2}$ vs. Frequency at 4V, 80 mA .

Notes:

1. The $\mathrm{F}_{\min }$ values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATF NP5 test system. From these measurements a true $\mathrm{F}_{\text {min }}$ is calculated. Refer to the noise parameter application section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point.

Noise Parameter Applications Information

$\mathrm{F}_{\text {min }}$ values at 2 GHz and higher are based on measurements while the $\mathrm{F}_{\text {mins }}$ below 2 GHz have been extrapolated. The $\mathrm{F}_{\text {min }}$ values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements, a true $\mathrm{F}_{\text {min }}$ is calculated. $\mathrm{F}_{\text {min }}$ represents the true minimum noise figure of the device when the device is presented with an impedance matching network that transforms the source impedance, typically 50Ω, to an impedance represented by the reflection coefficient Γ_{o}. The designer must design a matching network that will present Γ_{o} to the device with minimal associated circuit losses. The noise figure of the completed amplifier is equal to the noise figure of the device plus the losses of the matching network preceding the device. The noise figure of the device is equal to $\mathrm{F}_{\text {min }}$ only when the device is
presented with Γ_{o}. If the reflection coefficient of the matching network is other than Γ_{o}, then the noise figure of the device will be greater than $\mathrm{F}_{\text {min }}$ based on the following equation.
$\mathrm{NF}=\mathrm{F}_{\text {min }}+\frac{4 \mathrm{R}_{\mathrm{n}}}{\mathrm{Zo}} \frac{\left|\Gamma_{\mathrm{S}}-\Gamma_{\mathrm{o}}\right|^{2}}{\left(\mid 1+\Gamma_{\mathrm{o}}{ }^{2}\right)\left(1-\left.\Gamma_{\mathrm{S}}\right|^{2}\right)}$
Where R_{n} / Z_{o} is the normalized noise resistance, Γ_{o} is the optimum reflection coefficient required to produce $\mathrm{F}_{\min }$ and Γ_{s} is the reflection coefficient of the source impedance actually presented to the device. The losses of the matching networks are non-zero and they will also add to the noise figure of the device creating a higher amplifier noise figure. The losses of the matching networks are related to the Q of the components and associated printed circuit board loss. Γ_{o} is typically fairly low at higher frequencies and increases as frequency is lowered. Larger gate width devices will typically have a lower Γ_{o} as compared to narrower gate width devices.

Typically for FETs, the higher Γ_{o} usually infers that an impedance much higher than 50Ω is required for the device to produce $\mathrm{F}_{\min }$. At VHF frequencies and even lower L Band frequencies, the required impedance can be in the vicinity of several thousand ohms.
Matching to such a high impedance requires very hi-Q components in order to minimize circuit losses. As an example at 900 MHz , when airwwound coils ($\mathrm{Q}>100$) are used for matching networks, the loss can still be up to 0.25 dB which will add directly to the noise figure of the device. Using muiltilayer molded inductors with Qs in the 30 to 50 range results in additional loss over the airwound coil. Losses as high as 0.5 dB or greater add to the typical 0.15 dB $\mathrm{F}_{\text {min }}$ of the device creating an amplifier noise figure of nearly 0.65 dB . A discussion concerning calculated and measured circuit losses and their effect on amplifier noise figure is covered in Agilent Application 1085.

Reliability Data

	Nominal Failures per million (FPM) for different durations				90% confidence Failures per million (FPM) for different durations					
Channel Temperature $\left({ }^{\circ}\right.$ C)	(FITs) 1000 hours	1 year	5 year	10 year	30 year	(FITs) 1000 hours	1 year	5 year	10 year	30 year
100	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
125	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	11
140	<0.1	<0.1	<0.1	<0.1	160	<0.1	<0.1	6	160	9.3 K
150	<0.1	<0.1	2	140	26 K	<0.1	0.3	780	8800	131 K
160	<0.1	<0.1	920	21 K	370 K	<0.1	67	24 K	120 K	520 K
180 NOT recommended	<0.1	4400	450 K	830 K	1000 K	21	53 K	590 K	850 K	1000 K

Predicted failures with temperature extrapolated from failure distribution and activation energy data of higher temperature operational life STRIFE of PHEMT process

ATF-33143 Die Model

Statz Model
MESFETM1

NFET=yes
PFET=no
Vto $=-0.95$
Beta $=0.48$
Lambda=0.09
Alpha=4
$\mathrm{B}=0.8$
Tnom=27
Idstc=
Vbi=0.7
Tau=
Betatce=
Delta1=0.2
Delta2=
Gscap=3
$\mathrm{Cgs}=1.6 \mathrm{pF}$
$\mathrm{Gdcap}=3$
$\mathrm{Cgd}=0.32 \mathrm{pF}$
$\mathrm{Rgd}=$
$\mathrm{Tqm}=$
$\mathrm{Vmax}=$
$\mathrm{Fc}=$
$\mathrm{Rd}=.125$
$\mathrm{Rg}=1$
$\mathrm{Rs}=0.0625$
$\mathrm{Ld}=0.00375 \mathrm{nH}$
$\mathrm{Lg}-0.00375 \mathrm{nH}$
$\mathrm{LS}=0.00125 \mathrm{nH}$
$\mathrm{Cds}=0.08 \mathrm{pF}$
$\mathrm{Crf}=0.1$

This model can be used as a design tool. It has been tested on MDS for various specifications. However, for more precise and accurate design, please refer to

$\mathrm{Rc}=62.5$	Taumd1=no
$\mathrm{Gsfwd}=1$	$\mathrm{Fnc}=1 \mathrm{E} 6$
$\mathrm{Gsrev}=0$	$\mathrm{R}=0.17$
$\mathrm{Gdfwd}=1$	$\mathrm{C}=0.2$
$\mathrm{Gdrev}=0$	$\mathrm{P}=0.65$
$\mathrm{Vjr}=1$	$\mathrm{wVgfwd}=$
$\mathrm{I}=1 \mathrm{nA}$	$\mathrm{wBvgs}=$
$\mathrm{I}=1 \mathrm{nA}$	$\mathrm{wBvgd}=$
$\mathrm{Imax}=0.1$	wBvds=
$\mathrm{Xti}=$	wldsmax $=$
$\mathrm{N}=$	wPmax=
$\mathrm{Eg}=$	Al IParams=
$\mathrm{Vbr}=$	
$\mathrm{Vtotc}=$	
Rin=	

the measured data in this data sheet. For future improvements Agilent reserves the right to change these models without prior notice.

ATF-33143 Model

Part Number Ordering Information

Part Number	No. of Devices	Container
ATF-33143-TR1	3000	$7^{\prime \prime}$ Reel
ATF-33143-TR2	10000	13 " Reel
ATF-33143-BLK	100	antistatic bag

Package Dimensions

Outline 43 (SOT-343/SC-70 4 lead)

SYMBOL	DIMENSIONS	
	MIN.	MAX.
A	$0.80(0.031)$	$1.00(0.039)$
A1	$0(0)$	$0.10(0.004)$
b	$0.25(0.010)$	$0.35(0.014)$
C	$0.10(0.004)$	$0.20(0.008)$
D	$1.90(0.075)$	$2.10(0.083)$
E	$2.00(0.079)$	$2.20(0.087)$
e	$0.55(0.022)$	$0.65(0.025)$
h	0.450 TYP (0.018)	
E1	$1.15(0.045)$	$1.35(0.053)$
L	$0.10(0.004)$	$0.35(0.014)$
θ	0	

dIMENSIONS ARE IN MILLIMETERS (INCHES)

Device Orientation

Tape Dimensions

For Outline 4T

DESCRIPTION		SYMBOL	SIZE (mm)	SIZE (INCHES)
CAVITY	LENGTH	A_{0}	2.24 ± 0.10	0.088 ± 0.004
	WIDTH	B_{0}	2.34 ± 0.10	0.092 ± 0.004
	DEPTH	K_{0}	1.22 ± 0.10	0.048 ± 0.004
	PITCH	P	4.00 ± 0.10	0.157 ± 0.004
	BOTTOM HOLE DIAMETER	D_{1}	$1.00+0.25$	$0.039+0.010$
PERFORATION	DIAMETER	D	1.55 ± 0.05	0.061 ± 0.002
	PITCH	P_{0}	4.00 ± 0.10	0.157 ± 0.004
	POSITION	E	1.75 ± 0.10	0.069 ± 0.004
CARRIER TAPE	WIDTH	W	8.00 ± 0.30	0.315 ± 0.012
	THICKNESS	t_{1}	0.255 ± 0.013	0.010 ± 0.0005
COVER TAPE	WIDTH	C	5.4 ± 0.10	0.205 ± 0.004
	TAPE THICKNESS	T_{t}	0.062 ± 0.001	0.0025 ± 0.00004
DISTANCE	CAVITY TO PERFORATION	F	3.50 ± 0.05	0.138 ± 0.002
	(WIDTH DIRECTION)			
	CAVITY TO PERFORATION	P_{2}	2.00 ± 0.05	0.079 ± 0.002
	(LENGTH DIRECTION)			

Data subject to change.
Copyright © 2001 Agilent Technologies, Inc
Obsoletes 5968-7454E
October 26, 2001
5988-4211EN

