$\mathcal{N}_{\varepsilon \omega} \mathcal{Z}_{\varepsilon \text { rsey }} S_{\text {rmi-Conductor }} \mathcal{P}_{\text {roducts, }}$ Inc.

NPN Silicon Epitaxial Planar Transistors

 designed for emitter-grounded AM and FM amplifier stages

Plastic case \approx JEDEC TO-92
TO-18 compatible
The case is impervious to light
Weight approximately 0.18 g
Dimensions in mm

Absolute Maximum Ratings

	Symbol	Value	Unit
Collector Base Voltage	$V_{\text {ceo }}$	40	V
Collector Emitter Voltage	$V_{\text {ceo }}$	40	V
Emitter Base Voltage	$V_{\text {Ebo }}$	4	V
Collector Current	l_{c}	25	mA
Base Current	I_{B}	2	mA
Power Dissipation at $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	300^{11}	mW
Junction Temperature	T	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	T_{s}	-55 $\ldots+150$	${ }^{\circ} \mathrm{C}$
${ }^{1)}$ Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case			

N.J Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

Characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

	Symbol	Min.	Typ.	Max.	Value
DC Current Gain at $V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	$\begin{aligned} & h_{\mathrm{FE}} \\ & \mathrm{~h}_{\mathrm{FE}} \end{aligned}$	$\begin{aligned} & 67 \\ & 36 \end{aligned}$	-	$\begin{aligned} & 220 \\ & 125 \end{aligned}$	-
Base Emitter Voltage at $\mathrm{V}_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	$V_{\text {bE }}$	650	700	740	mV
Collector Cutoff Current at $\mathrm{V}_{C B}=20 \mathrm{~V}$	$I_{\text {cbo }}$	-	-	100	nA
Thermal Resistance Junction to Ambient	$\mathrm{R}_{\mathrm{thA}}$	-	-	$420{ }^{11}$	K/W
Collector Base Breakdown Voltage at $\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}$	$V_{\text {(вя) сяо }}$	40	-	-	V
Collector Emitter Breakdown Voltage at $\mathrm{l}_{\mathrm{C}}=2 \mathrm{~mA}$	$V_{\text {(ba)CEO }}$	40	-	-	V
Emitter Base Breakdown Voltage at $t_{E}=10 \mu \mathrm{~A}$	$V_{(B R) E B O}$	4	-	-	V
Gain Bandwidth Product at $\begin{array}{ll}V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{t}=100 \mathrm{MHz} & \\ & \text { BF240 } \\ & \text { BF241 }\end{array}$	$\begin{aligned} & f_{T} \\ & f_{T} \end{aligned}$	-	$\begin{aligned} & 430 \\ & 400 \end{aligned}$	-	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
Feedback Capacitance at $\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathfrak{f}=1 \mathrm{MHz}$	$-\mathrm{C}_{\text {re }}$	-	0.27	-	pF
Noise Figure (emitter grounded) at $V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$ $g_{s}=5 \mathrm{~ms}, 1=200 \mathrm{kHz}$ $y_{s}=(6.6-j 3.3) \mathrm{mS}, \mathrm{f}=100 \mathrm{MHz}$	$\begin{aligned} & F \\ & F \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 1.6 \end{aligned}$	3.5	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Output Admittance at $\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{f}=10.7 \mathrm{MHz}$ at $\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, f=470 \mathrm{kHz}$	$\begin{aligned} & \mathrm{g}_{\circ e} \\ & \mathrm{~g}_{\text {oe }} \end{aligned}$	-	-	$\begin{aligned} & 10.5 \\ & 8.3 \end{aligned}$	${ }_{\mu \mathrm{S}}^{\mu \mathrm{S}}$

[^0]
[^0]: ${ }^{1 /}$ Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

