DISCRETE SEMICONDUCTORS

Product specification Supersedes data of June 1994 File under Discrete Semiconductors, SC09 1996 May 22

BGY201

FEATURES

- 12.5 V nominal supply voltage
- 14 W output power
- Easy control of output power by pulsed DC voltage.

APPLICATIONS

• Digital cellular radio systems with Time Division Multiple Access (TDMA) operation (GSM systems) in the 890 to 915 MHz frequency range.

DESCRIPTION

The BGY201 is a five-stage UHF amplifier module in a SOT278A package. It consists of five NPN silicon planar transistor dies mounted together with matching and bias circuit components on a metallized ceramic substrate.

PIN	DESCRIPTION
1	RF input
2	V _C
3	V _{S1}
4	V _{S2}
5	RF output
Flange	ground

PINNING - SOT278A

QUICK REFERENCE DATA

RF performance at $T_{mb} = 25 \ ^{\circ}C$.

MODE OF	f	V _{S1} ; V _{S2}	V _C	PL	G _p	η	Z _S ; Z _L
OPERATION	(MHz)	(V)	(V)	(W)	(dB)	(%)	(Ω)
Pulsed; $\delta = 1$: 8	890 to 915	12.5	≤4	14	≥41.5	typ. 38	50

WARNING

Product and environmental safety - toxic materials

This product contains beryllium oxide. The product is entirely safe provided that the BeO slab is not damaged. All persons who handle, use or dispose of this product should be aware of its nature and of the necessary safety precautions. After use, dispose of as chemical or special waste according to the regulations applying at the location of the user. It must never be thrown out with the general or domestic waste.

BGY201

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{S1}	DC supply voltage	$V_{\rm C} = 4 \rm V$	_	15.6	V
V _{S2}	DC supply voltage	$V_{\rm C} = 4 V$	_	15.6	V
V _C	DC control voltage		-	5	V
P _D	input drive power		-	2	mW
PL	load power		-	16	W
T _{stg}	storage temperature range		-40	+100	°C
T _{mb}	operating mounting base temperature		-30	+90	°C

CHARACTERISTICS

 $Z_S = Z_L = 50 \ \Omega$; $P_D = 1 \ mW$; $V_{S1} = V_{S2} = 12.5 \ V$; $V_C \le 4 \ V$; f = 890 to 915 MHz; $T_{mb} = 25 \ ^{\circ}C$; $\delta = 1 : 8$; $t_p = 575 \ \mu$ s; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _{Q2}	leakage current	$V_{S1} = V_C = 0$	-	-	1	mA
Ι _C	control current	adjust V_C for $P_L = 14 W$	-	-	1	mA
PL	load power		14	-	-	W
G _p	power gain	adjust V_C for $P_L = 14 W$	41.5	-	-	dB
η	efficiency	adjust V_C for $P_L = 14 W$	33	38	—	%
H ₂	second harmonic	adjust V_C for $P_L = 14 W$	-	-	-40	dBc
H ₃	third harmonic	adjust V_C for $P_L = 14 W$	-	-	-40	dBc
VSWR _{in}	input VSWR	adjust V_C for $P_L = 14 W$	-	-	2:1	
	stability	$\begin{split} P_{D} &= -3 \text{ to } + 3 \text{ dBm}; \\ V_{S1} &= V_{S2} = 10 \text{ to } 15.6 \text{ V}; \\ V_{C} &= 0 \text{ to } 4 \text{ V}; P_{L} \leq 14 \text{ W}; \\ \text{VSWR} &\leq 6 : 1 \text{ through all phases} \end{split}$	_	_	-55	dBc
	isolation	V _C < 0.5 V	-	_	-36	dBm
	control bandwidth	$P_L \le 14 \text{ W}$	1	-	-	MHz
	AM-AM conversion	P_D with 1% AM; $P_L \le 14$ W	-	-	3	
t _r	rise time		-	-	1	μs
	ruggedness	$\label{eq:VS1} \begin{array}{l} V_{S1} = V_{S2} = 15.6 \text{ V};\\ \text{adjust } V_C \text{ for } P_L = 16 \text{ W}\\ \text{VSWR} \leq 10:1 \text{ through all phases} \end{array}$	no	degrada	tion	

BGY201

BGY201

Fig.7 Load power as a function of drive power; typical values.

Fig.9 Output amplitude modulation of load power; typical values.

-70 ∟ 870

890

typical values.

910

 $\begin{array}{l} Z_{S} = Z_{L} = 50 \; \Omega; \; P_{D} = 1 \; mW; \; V_{S1} = V_{S2} = 12.5 \; V; \; P_{L} = 14 \; W; \\ T_{mb} = 25 \; ^{\circ}C; \; \delta = 1:8; \; t_{p} = 575 \; \mu s. \end{array}$

Fig.8 Harmonics as functions of frequency;

930 _{f (MHz)} 950

BGY201

BGY201

List of components (see Fig.10)

COMPONENT	DESCRIPTION	VALUE	CATALOGUE NO.
C1	tantalum capacitor; note 1	560 pF	_
C2, C4	tantalum capacitor; note 1	2.2 μF	_
C3, C5	electrolytic capacitor; note 1	22 μF	-
C6	electrolytic capacitor; note 1	220 μF	_
L1, L2	RF choke, 0.5 turn 0.8 mm copper wire on grade 3B core	1 μH	4330 030 32221
Z ₁ , Z ₂	stripline; note 2	_	-
R1	metal film resistor	100 Ω; 0.4 W	_

Notes

1. The capacitors are for external supply decoupling and optimum pulse shape.

2. The striplines are on a double copper-clad printed-circuit board with PTFE fibreglass dielectric (ϵ = 2.2); thickness 1/16 inch.

BGY201

PACKAGE OUTLINE

BGY201

Product specification

DEFINITIONS

Data sheet status				
Objective specification	This data sheet contains target or goal specifications for product development.			
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.			
Product specification	This data sheet contains final product specifications.			
Limiting values				
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.				
Application information				
Where application information is given, it is advisory and does not form part of the specification.				

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.