
DISCRETE SEMICONDUCTORS

Product specification Supersedes data of May 1994 File under Discrete Semiconductors, SC09 1996 May 23

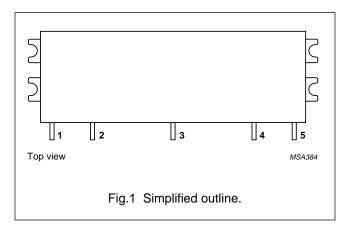
Philips Semiconductors

BGY203

FEATURES

- 6 V nominal supply voltage
- 3.2 W output power
- Easy control of output power by pulsed DC voltage.

APPLICATIONS


• Digital cellular radio systems with Time Division Multiple Access (TDMA) operation (GSM systems) in the 880 to 915 MHz frequency range.

DESCRIPTION

The BGY203 is a four-stage UHF amplifier module in a SOT342A package. The module consists of four NPN silicon planar transistor dies mounted together with matching and bias circuit components on a metallized ceramic substrate.

PINNING - SOT342A

PIN	DESCRIPTION	
1	RF input	
2	V _C	
3	V _{S1}	
4	V _{S2}	
5	RF output	
Flange	ground	

QUICK REFERENCE DATA

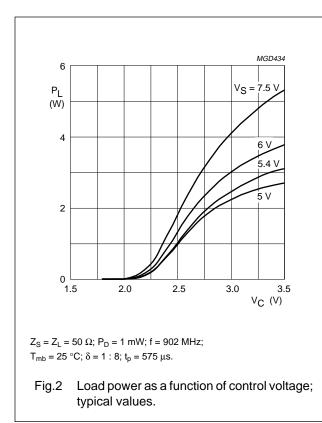
RF performance at T_{mb} = 25 °C.

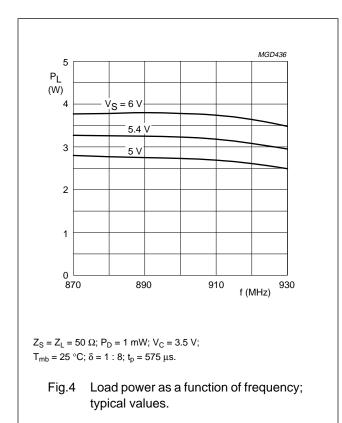
MODE OF	f	V _{S1} ; V _{S2}	V _C	P _L	G _p	η	Z _S ; Z _L
OPERATION	(MHz)	(V)	(V)	(W)	(dB)	(%)	(Ω)
Pulsed; δ = 1 : 8	880 to 915	6	≤3.5	3.2	≥35	≥35	50

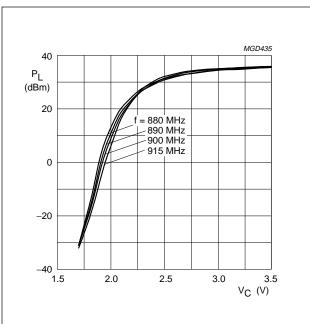
BGY203

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).


SYMBOL	PARAMETER	CONDITIONS.	MIN.	MAX.	UNIT
V _{S1}	DC supply voltage	V _C = 3.5 V	-	8.5	V
V _{S2}	DC supply voltage	V _C = 3.5 V	-	8.5	V
V _C	DC control voltage		-	4	V
PD	input drive power		-	2	mW
PL	load power		_	4	W
T _{stg}	storage temperature		-40	+100	°C
T _{mb}	operating mounting base temperature		-30	+100	°C


CHARACTERISTICS

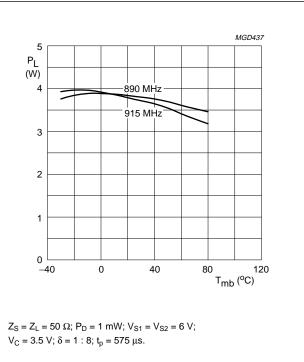
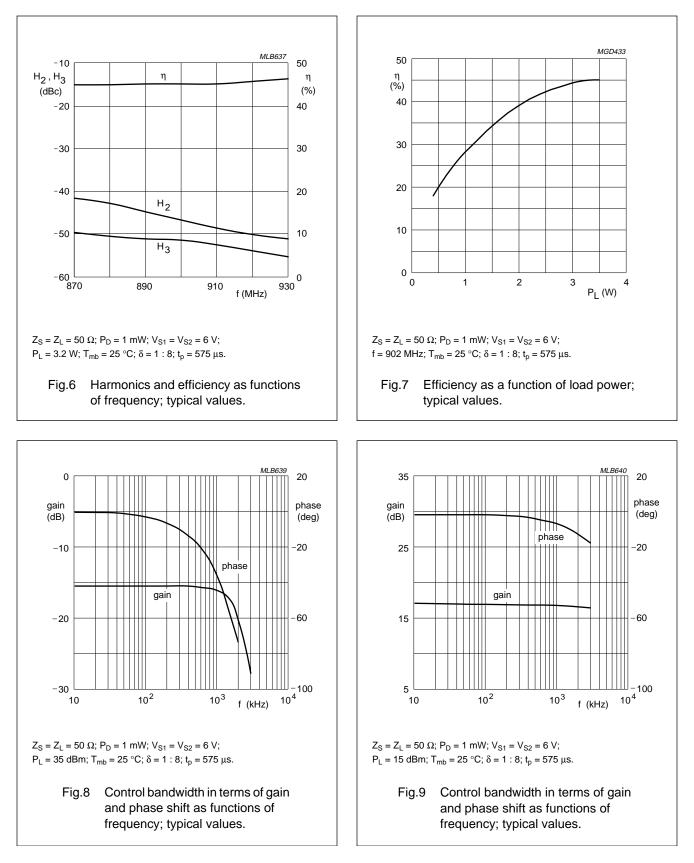
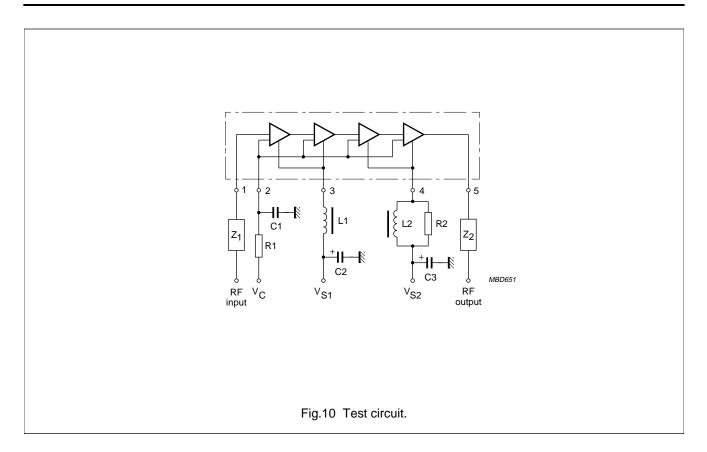

 $Z_S = Z_L = 50 \ \Omega$; $P_D = 1 \ mW$; $V_{S1} = V_{S2} = 6 \ V$; $V_C \le 3.5 \ V$; f = 880 to 915 MHz; $T_{mb} = 25 \ ^{\circ}C$; $\delta = 1 : 8$; $t_p = 575 \ \mu$ s; unless otherwise specified.

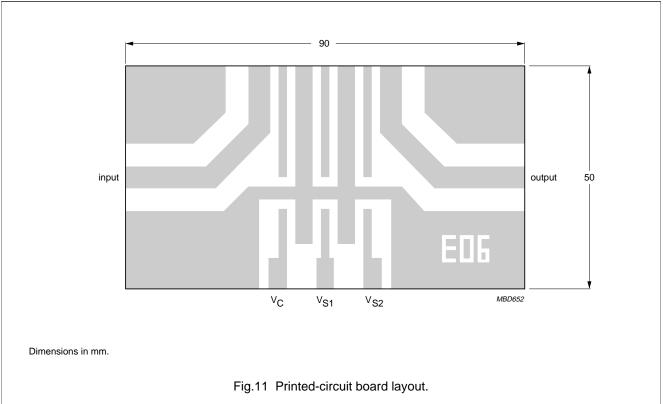
SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
I _{Q1} + I _{Q2}	total leakage current	$V_{C} \le 0.5 V$	-	0.2	mA
I _C	control current	adjust V_C for $P_L = 3.2 W$	-	0.5	mA
PL	load power		3.2	_	W
G _p	power gain	adjust V_C for $P_L = 3.2 W$	35	_	dB
η	efficiency	adjust V_C for $P_L = 3.2 W$	35	_	%
H ₂	second harmonic	adjust V_C for $P_L = 3.2 W$	_	-40	dBc
H ₃	third harmonic	adjust V_C for $P_L = 3.2 W$	_	-40	dBc
VSWR _{in}	input VSWR	adjust V_C for $P_L = 3.2 W$	_	2:1	
	stability	$ \begin{array}{l} {\sf P}_{\sf D} = 0.5 \mbox{ to } 2 \mbox{ mW}; V_{{\sf S}1} = {\sf V}_{{\sf S}2} = 5 \mbox{ to } 8.5 \mbox{ V}; \\ {\sf V}_{\sf C} = 0 \mbox{ to } 3.5 \mbox{ V}; {\sf P}_{\sf L} \leq 3.5 \mbox{ W}; \\ {\sf V}SWR \leq 6: 1 \mbox{ through all phases} \end{array} $	-	-60	dBc
	isolation	$V_{C} \le 0.5 V$	_	-36	dBm
	control bandwidth		1	_	MHz
P _n	noise power	$P_L = 3.2$ W; bandwidth = 30 kHz; 20 MHz above transmitter band	-	-85	dBm
	ruggedness	$V_{S1} = V_{S2} = 8.5 \text{ V}; \text{ adjust } V_C \text{ for } P_L = 3.5 \text{ W};$ VSWR ≤ 10 : 1 through all phases	no deg	radation	

BGY203

$$\begin{split} & Z_{S} = Z_{L} = 50 \; \Omega; \; P_{D} = 1 \; mW; \; V_{S1} = V_{S2} = 6 \; V; \\ & T_{mb} = 25 \; ^{\circ}C; \; \delta = 1:8; \; t_{p} = 575 \; \mu s. \end{split}$$

Fig.3 Load power as a function of control voltage; typical values.


Fig.5 Load power as a function of mounting base temperature; typical values.

BGY203

BGY203

BGY203

List of components (see Fig.10)

COMPONENT	DESCRIPTION	VALUE	CATALOGUE NO.
C1	multilayer ceramic chip capacitor	470 pF	_
C2	tantalum capacitor	2.2 μF	_
C3	electrolytic capacitor	68 μF	_
L1, L2	1 turn 0.4 mm copper wire on grade 3B core	0.9 μΗ	4330 030 32221
Z ₁ , Z ₂	stripline; note 1	50 Ω	_
R1	metal film resistor	80 Ω; 0.4 W	_
R2	metal film resistor	5 Ω; 0.4 W	-

Note

1. The striplines are on a double copper-clad printed-circuit board with PTFE fibreglass dielectric (ϵ_r = 2.2); thickness $\frac{1}{16}$ inch.

Product specification

SOLDERING

The indicated temperatures are those at the solder interfaces.

Advised solder types are types with a liquidus less than or equal to 210 $^\circ\text{C}.$

Solder dots or solder prints must be large enough to wet the contact areas.

Footprints for soldering should cover the module contact area +0.1 mm on all sides.

Soldering can be carried out using a conveyor oven, a hot air oven, an infrared oven or a combination of these ovens.

Hand soldering must be avoided because the soldering iron tip can exceed the maximum permitted temperature of 250 $^{\circ}$ C and damage the module.

The maximum temperature profile and soldering time is indicated as follows (see Fig.12):

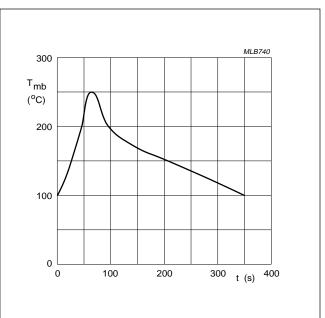
- t = 350 s at 100 °C
- t = 300 s at 125 °C
- t = 200 s at 150 °C
- t = 100 s at 175 °C
- t = 50 s at 200 $^{\circ}$ C
- t = 5 s at 250 °C (maximum temperature).

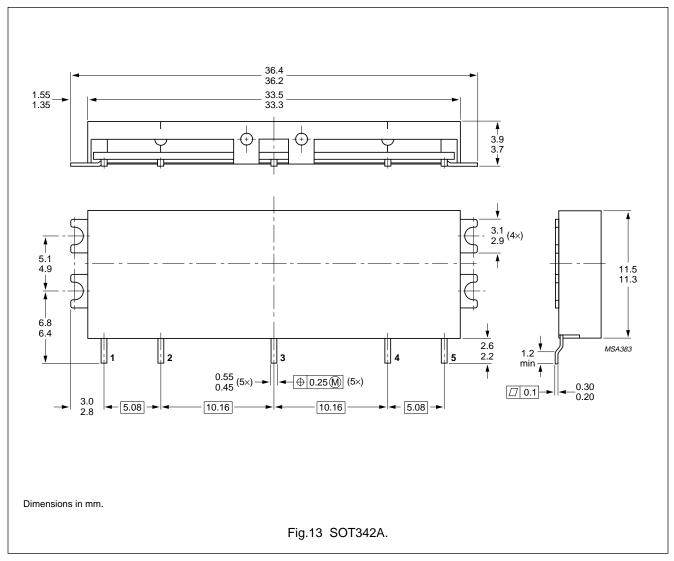
Cleaning

The following fluids may be used for cleaning:

- Alcohol
- Bio-Act (Terpene Hydrocarbon)
- Triclean B/S
- Acetone.

Ultrasonic cleaning should not be used since this can cause serious damage to the product.




Fig.12 Maximum allowable temperature profile.

BGY203

BGY203

Product specification

PACKAGE OUTLINE

Product specification

BGY203

DEFINITIONS

Data sheet status				
Objective specification	This data sheet contains target or goal specifications for product development.			
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.			
Product specification	This data sheet contains final product specifications.			
Limiting values				
more of the limiting values of the device at these or at	accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or may cause permanent damage to the device. These are stress ratings only and operation any other conditions above those given in the Characteristics sections of the specification limiting values for extended periods may affect device reliability.			
Application information				
Where application informat	on is given, it is advisory and does not form part of the specification.			

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.