20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

# **UHF** power transistor

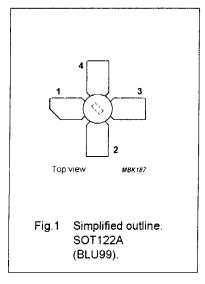
BLU99/SL

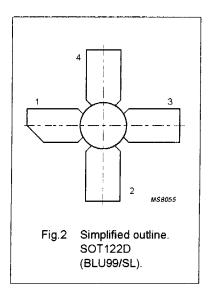
### DESCRIPTION

N-P-N silicon planar epitaxial transistor primarily intended for use in mobile radio transmitters in the u.h.f. band. The transistor is also very suitable for application in the 900 MHz mobile radio band.

### **FEATURES**

- multi-base structure and diffused emitter-ballasting resistors for an optimum temperature profile;
- gold metallization ensures excellent reliability.


The BLU99 has a 4-lead stud envelope with a ceramic cap (SOT122A). All leads are isolated from the stud. The BLU99/SL is a studless version (SOT122D).


#### QUICK REFERENCE DATA

R.F. performance at T<sub>h</sub> = 25 °C in a common-emitter class-B circuit.

| MODE OF OPERATION | V <sub>CE</sub> | f<br>MHz | P <sub>L</sub><br>W | G <sub>p</sub> | ης<br>% |
|-------------------|-----------------|----------|---------------------|----------------|---------|
| narrow band; c.w. | 12,5            | 470      | 5                   | > 10,5         | > 60    |
|                   | 12,5            | 900      | 4                   | typ. 7,0       | typ. 60 |

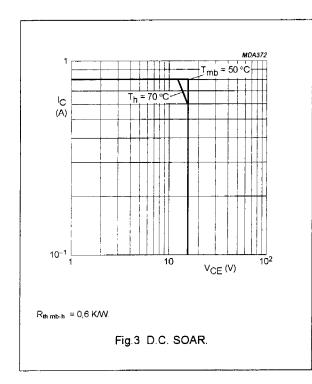
## PIN CONFIGURATION

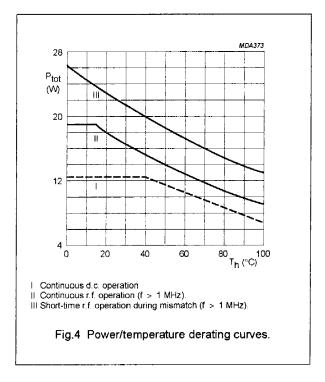




#### PINNING - SOT122A; SOT122D

| PIN | DESCRIPTION |
|-----|-------------|
| 1   | collector   |
| 2   | emitter     |
| 3   | base        |
| 4   | emitter     |


PRODUCT SAFETY This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely safe provided that the BeO disc is not damaged.


NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

**Quality Semi-Conductors** 

| RA1 | ΓIN | GS |
|-----|-----|----|
|     |     |    |

| Limiting values in accordance with the Absolute Maximum Sys | tem (IEC 134)    |       |       |    |
|-------------------------------------------------------------|------------------|-------|-------|----|
| Collector-base voltage (open emitter)                       | $V_{CBO}$        | max.  | 36    | ٧  |
| Collector-emitter voltage (open base)                       | $V_{CEO}$        | max.  | 16    | ٧  |
| Emitter-base voltage (open collector)                       | $V_{EBO}$        | max.  | 3     | ٧  |
| Collector current                                           |                  |       |       |    |
| d.c. or average                                             | Ic;Ic(AV)        | max.  | 0,8   | Α  |
| peak value; f > 1 MHz                                       | I <sub>CM</sub>  | max.  | 2,5   | Α  |
| D.C. power dissipation up to $T_{mb}$ = 50 $^{\circ}$ C     | Ptot (d.c.)      | max.  | 12,5  | W  |
| R.F. power dissipation                                      |                  |       |       |    |
| f > 1 MHz; T <sub>mb</sub> = 25 °C                          | Ptot (r.f.)      | max.  | 19    | W  |
| Storage temperature                                         | T <sub>stg</sub> | 65 to | + 150 | ಿC |
| Operating junction temperature                              | $T_{j}$          | max.  | 200   | °C |





## THERMAL RESISTANCE

(dissipation = 9 W; T<sub>mb</sub> = 25 °C)

From junction to mounting base

(d.c. dissipation)

From junction to mounting base

(r.f. dissipation)

From mounting base to heatsink

R<sub>th j-mb(dc)</sub>

10 K/W

R<sub>th j-mb(rf)</sub>

=

7,5 K/W

R<sub>th mb-h</sub>

=

0,6 K/W

| CHARACTERISTICS                                    |                      |      |     |     |
|----------------------------------------------------|----------------------|------|-----|-----|
| T <sub>j</sub> = 25 °C unless otherwise specified  |                      |      |     |     |
| Collector-base breakdown voltage                   |                      |      |     |     |
| open emitter; I <sub>C</sub> = 10 mA               | V <sub>(BR)CBO</sub> | >    | 36  | V   |
| Collector-emitter breakdown voltage                | (51.)020             |      |     |     |
| open base; I <sub>C</sub> = 20 mA                  | V <sub>(BR)CEO</sub> | >    | 16  | V   |
| Emitter-base breakdown voltage                     | (= :                 |      |     |     |
| open collector; I <sub>E</sub> = 1 mA              | $V_{(BR)EBO}$        | >    | 3   | V   |
| Collector cut-off current                          | \                    |      |     |     |
| $V_{BE}$ = 0; $V_{CE}$ = 16 V                      | I <sub>CES</sub>     | <    | 5   | mA  |
| Second breakdown energy; L = 25 mH; f = 50 Hz      |                      |      |     |     |
| $R_{BE} = 10 \Omega$                               | E <sub>SBR</sub>     | >    | 1   | mJ  |
| D.C. current gain <sup>(2)</sup>                   |                      |      |     |     |
| $I_C = 0.6 \text{ A}; V_{CE} = 10 \text{ V}$       | h <sub>FE</sub>      | >    | 25  |     |
|                                                    |                      | typ. | 100 |     |
| Transition frequency at f = 500 MHz <sup>(1)</sup> |                      |      |     |     |
| $I_C = 0.6 \text{ A}$ ; $V_{CE} = 12.5 \text{ V}$  | $\mathbf{f}_T$       | typ. | 4,0 | GHz |
| Collector capacitance at f = 1 MHz                 |                      |      |     |     |
| $I_{E} = I_{e} = 0$ ; $V_{CB} = 12.5 \text{ V}$    | $C_c$                | typ. | 7,5 | pF  |
| Feedback capacitance at f = 1 MHz                  |                      |      |     |     |
| $I_{C} = 0$ ; $V_{CE} = 12,5 \text{ V}$            | C <sub>re</sub>      | typ. | 5   | pF  |
| Collector-stud capacitance                         | C <sub>cs</sub>      | typ. | 1,2 | pF  |
|                                                    |                      |      |     |     |

#### Notes

- 1. Measured under pulse conditions:  $t_p$  =  $\,$  50  $\mu s; \, \delta <$  0,01.
- 2. Measured under pulse conditions:  $t_p$  = 300  $\mu s;~\delta <$  0,01.