New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

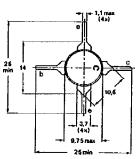
BLX91A

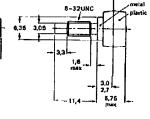
Dimensions in mm

U.H.F. POWER TRANSISTOR

N-P-N silicon planar epitaxial transistor intended for transmitting applications in class-A, B or C with a supply voltage up to 28 V. The transistor is resistance stabilized and is guaranteed to withstand severe load mismatch conditions. Gold metallization ensures extremely high reliability.

It has a capstan envelope with a moulded cap. All leads are isolated from the stud.


QUICK REFERENCE DATA


R.F. performance up to T_h = 25 °C in an unneutralized common-emitter class B circuit

mode of operation		f MHz	Ps mW	PL W	I _C mA	G _p dB	n %	zΪ Ω	Ϋ́L mS
c.w.	24	470			typ. 87	typ. 12,3	typ. 53		_
c.w.	28	470	< 80	1,0	< 71	> 11,0	> 50		
c.w.	28	470	typ. 80	1,45	typ. 86	typ. 12,6	typ. 60	2.5 + i0.2	3 .4 - i16
c.w.	28	1000	typ. 400	1,4	typ.100		typ. 50		

MECHANICAL DATA

Fig. 1 SOT-48/3.

Torque on nut: min, 0,75 Nm (7,5 kg cm) max. 0,85 Nm (8,5 kg cm)

Diameter of clearance hole in heatsink: max. 4,2 mm. Mounting hole to have no burrs at either end. De-burring must leave surface flat; do not chamfer or countersink either end of hole.

When locking is required an adhesive is preferred instead of a lock washer.

NJ Semi-Conductors reserves the right to change test conditions, parameters limits and package dimensions without notice information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

			~, o.e	(120)
Voltages				
Collector-base voltage (open emitter) peak value	V _{CBOM}	max.	65	v
Collector-emitter voltage ($V_{BE} = 0$) peak value	V _{CESM}	max.	65	v
Collector-emitter voltage (open base)	VCEO	max.	33	v
Emitter-base voltage (open collector)	v _{EBO}	max.	4,0	v
Currents				
Collector current (d.c.)	1C	max.	400	mA
Collector current (peak value); f≥10 MHz	JCM	max.	800	mA
Power dissipation				
Total power dissipation up to $T_h = 70$ °C $f \ge 10$ MHz	P _{tot}	max.	4,0	w
Temperatures				
Storage temperature	Tstg	~65 to	+150	°C
Operating junction temperature	тj	max.	200	°C
THERMAL RESISTANCE				
From junction to mounting base	R _{th j} -mb	=	32,5	к/w
From mounting base to heatsink	R _{th mb-h}	-	0,6	K/W

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134) Voltages

CHARACTERISTICS

$T_j = 25 ^{\circ}C$ unless otherwise specified				
Breakdown voltages				
Collector-base voltage open emitter, $I_C = 10 \text{ mA}$	V(BR)CBO	>	65	v
Collector-emitter voltage $V_{BB} = 0$, $I_C = 10 \text{ mA}$	V(BR)CES	>	65	v
Collector-emitter voltage open base, $l_{\rm C}$ = 25 mA	V(BR)CEO	>	33	v
Emitter-base voltage open collector, $I_E = 1.0 \text{ mA}$	V(BR)EBO	>	4,0	v
D.C. current gain				
$I_{C} = 100 \text{ mA}; V_{CE} = 5.0 \text{ V}$	h _{FE}	> t y p.	10 35	
Transition frequency				
$I_{C} = 50 \text{ mA}; V_{CE} = 5,0 \text{ V}$	ſŢ	typ.	1,2	GHz
Collector capacitance at $f = 1$ MHz				
$I_E = I_e = 0; V_{CB} = 10 V$	Cc	typ.	3,5	pF
Emitter capacitance at f = 1 MHz				
$I_{C} = I_{c} = 0; V_{EB} = 0$	Ce	typ.	11	pF
Feedback capacitance at $f = 1$ MHz				
$I_{C} = 5 \text{ mA}; V_{CE} = 10 \text{ V}$	Cre	typ.	2,5	pF
Collector-stud capacitance	Ccs	typ.	2,0	pF
			•	