New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

BLX95

U.H.F. POWER TRANSISTOR

N-P-N silicon planar epitaxial transistor intended for transmitting applications in class-A, B or C in the u.h.f. frequency range for supply voltages up to 28 V. The transistor is resistance stabilized and is tested under severe load mismatch conditions. Due to a gold metallization excellent reliability properties have been obtained. The transistor is housed in a capstan envelope with a moulded cap. All leads are isolated from the stud.

QUICK REFERENCE DATA

R.F. performance up to $T_h = 25 \text{ oC}$ in an unneutralized common-emitter class-B circuit

mode of operation	V _{CE}	f	PS	PL	I _C	G _p	η
	V	MHz	W	W	A	dB	%
C.W.	28	470	< 14,2	40	< 2,4	> 4,5	> 60
C.W.	28	175	typ. 3,2	40	typ. 1,9	typ. 11	typ. 75

MECHANICAL DATA Fig. 1 SOT-56.

Dimensions in mm

Torque on nut: min. 1,5 Nm (15 kg cm) max. 1,7 Nm (17 kg cm) Diameter of clearance hole in heatsink: max. 4,9 mm. Mounting hole to have no burrs at either end. De-burring must leave surface flat; do not chamfer or countersink either end of hole.

When locking is required an adhesive is preferred instead of a lock washer.

PRODUCT SAFETY This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely safe provided that the BeO disc is not damaged.

NJ Semi-Conductors reserves the right to change test conditions, parameters limits and package dimensions without notice information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

RATINGS Limiting	values	in	accordance	with	the	Absolute	Maximum	Sy	/stem
-------------------------	--------	----	------------	------	-----	----------	---------	----	-------

Collector-base voltage (open emitter) peak value
Collector-emitter voltage $(R_{BE} = 10 \Omega)$ peak value
Collector-emitter voltage (open base)
Emitter-base voltage (open collector)
Collector current (average)

Collector current (peak value) f > 1 MHz

•

VCBOM	max.	65	v
VCERM	I max.	65	v
VCEO	max.	30	v
v_{EBO}	max.	4	v
IC(AV)	max.	3,0	A
I _{CM}	max.	10,0	Α

 10^{2} I_{C} (A) 10^{1} I_{C} (A) 10^{1} $P_{tot} max (d.c.)$ 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1}

Storage temperature Junction temperature

THERMAL RESISTANCE

From junction to mounting base From mounting base to heatsink

Breakdown voltages				
Collector-base voltage open emitter, $I_{C} = 50 \text{ mA}$	V(BR)CBO	>	65	v
Collector-emitter voltage R _{BE} = 10Ω, I _C = 50 mA	V(BR)CER	>	65	v
Collector-emitter voltage open base, IC = 50 mA	V(BR)CEO	>	30	v
Emitter-base voltage open collector, $I_E = 10 \text{ mA}$	V(BR)EBO	>	4	v
Transient energy				
L = 25 mH; f = 50 Hz				
open base - V_{BE} = 1,5 V; R _{BE} = 33 Ω	E E	> >	4,5 4,5	mS mS
D.C. current gain				
$I_{C} = 1,0 A; V_{CE} = 5 V$	h_{FE}	25 to 100		
Transition frequency				
$I_{C} = 4 A$: $V_{CE} = 25 V$	ťт	typ.	900	MHz
Collector capacitance at f = 1 MHz				
$I_{\rm E} = I_{\rm e} = 0$: $V_{\rm CB} = 30 \ V$	Cc	typ. <	68 80	pF pF
Feedback capacitance at $f = 1$ MHz				
I_{C} = 200 mA; V_{CE} = 30 V	c_{re}	typ.	39	pF
Collector-stud capacitance	Ccs	typ.	2	pF