HORIZONTAL TV DEFLECTORS

DESCRIPTION

The BU406D. BU407D. and BU408D are silicon planar epitaxial NPN transistors with integrated damper diode, in Jedec TO-220 plastic package. They are fast switching, high voltage devices for use in horizontal deflection output stages of MTV receivers with 110° CRT.
The BU406D and BU408D are primarily intended for large screen, while the BU407D is for medium and small screens.

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value			Unit
		BU406D	BU407D	BU408D	
$\mathrm{V}_{\text {CBO }}$	Collector-base Voltage ($I_{E}=0$)	400	330	400	V
$\mathrm{V}_{\text {CEV }}$	Collector-emitter Voltage ($\mathrm{V}_{\mathrm{BE}}=-1.5 \mathrm{~V}$)	400	330	400	V
$\mathrm{V}_{\text {EBO }}$	Emitter-base Voltage ($\mathrm{I}_{\mathrm{C}}=0$)	6			V
I_{C}	Collector Current	7			A
ICM	Collector Peak Current (repetitive)	10			A
ICM	Collector Peak Current ($t_{p}=10 \mathrm{~ms}$)	15			A
I_{B}	Base Current	4			A
P_{101}	Total Power Dissipation at $\mathrm{T}_{\text {case }} \leq 25^{\circ} \mathrm{C}$	60			W
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to 150			${ }^{\circ} \mathrm{C}$
T	Junction Temperature	150			${ }^{\circ} \mathrm{C}$

THERMAL DATA

$R_{\text {th j-case }}$	Thermal Resistance Junction-case	Max	2.08	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th jamb }}$	Thermal Resistance Junction-ambient	Max	70	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($T_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
ICEV	Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{BE}}=-1.5 \mathrm{~V}\right)$	for BU406D and BU408D $V_{C E}=400 \mathrm{~V}$ for BU407D $V_{C E}=330 \mathrm{~V}$			15	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$I_{\text {EBO }}$	Emitter Cutoff Current $\left(I_{C}=0\right)$	$\mathrm{V}_{\mathrm{EB}}=6 \mathrm{~V}$			400	mA
$\mathrm{V}_{C E \text { (sat) }}{ }^{\text {a }}$	Collector-emitter Saturation Voltage	$\begin{array}{ll} \text { for BU406D and BU407D } \\ I_{C}=5 A & I_{B}=0.65 A \\ \text { for } B U 408 D & \\ I_{C}=6 A & I_{B}=1.2 A \\ \hline \end{array}$			$\begin{aligned} & 1 \\ & 1 \end{aligned}$	V V
$V_{B E \text { (sat) }}{ }^{*}$	Base-emitter Saturation Voltage	for BU406D and BU407D $\mathrm{I}_{\mathrm{C}}=5 \mathrm{~A}$ $I_{B}=0.65 A$ for BU408D $I_{C}=6 A \quad I_{B}=1.2 A$			$\begin{array}{r} 1.3 \\ 1.5 \\ \hline \end{array}$	V V
f_{T}	Transition Frequency	$\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A} \quad \mathrm{~V}_{C E}=10 \mathrm{~V}$	10			MHz
toll	Turn-off Time	$\begin{array}{ll} \text { for BU406D and BU407D } \\ I_{C}=5 A & \text { Bend }=0.65 \mathrm{~A} \\ \text { for BU408D } & \\ I_{C}=6 A & I_{\text {Bend }}=1.2 \mathrm{~A} \\ \hline \end{array}$			$\begin{aligned} & 0.75 \\ & 0.5 \\ & \hline \end{aligned}$	$\mu \mathrm{s}$ $\mu \mathrm{s}$
$\mathrm{I}_{\mathrm{s} / \mathrm{b}}$	Second Breakdown Collector Current	$V_{C E}=40 \mathrm{~V} \quad \mathrm{t}=10 \mathrm{~ms}$		4		A
V_{F}	Diode Forward Voltage	$I_{F}=5 \mathrm{~A}$			1.5	V

- Pulsed : pulse duration $=300 \mu \mathrm{~s}$, duty cycle $=1.5 \%$.

DC Current Gain.

Collector-emitter Saturation Voltage.

Base-emitter Saturation Voltage

Forward Voltage.

SWITCHING TIMES

TEST CIRCUIT (FALL, STORAGE AND TURN-OFF TIME)

L1 Horizontal hold coil : Pins $1-2=75$ turns $00.2 \mathrm{~mm} ; R=15 \Omega: \mathrm{L}$ min $=0.62 \mathrm{mH}$ Core $=$ siterrit B $6212025 \times 4 \times 2$
Pins 2-3 $=293$ turns $00.2 \mathrm{~mm}: R=4.8 \Omega: L \max =4.1 \mathrm{mH}$
L2 Horizontal yoke $=200 \mu \mathrm{H}$
T1 Driver transformer : Pins 1-2 = 125 turns $\oslash 0.2 \mathrm{~mm}$
Gap $=0.12 \mathrm{~mm}:$ Core $=3 E 3$ double $E 19 \times 15 \times 5$
Pins 3-4 = 25 turns 00.4 mm
T2 EHT transformer manufacturer ARCO type 249.065/035
$R=270 \Omega$ for BU406D and BU407D
$R=180 \Omega 2$ for BU408D

Waveforms

Fall and storage time

Turn－off time is the time for the collector current ${ }^{1}$ C to decrease to 100 mA alter the collector to emilter voltage $V_{C E}$ has pisen $3 V$ into its flyback eacursion

Turn－off time

APPLICATION INFORMATION

Two examples are given of the BU406D and BU407D in conventional MTV horizontal deflection circuits．
BU406D－application circuit for $17^{\prime \prime}$ to $24^{\prime \prime}-110^{\circ}-28 \mathrm{~mm}$ neck picture tubes．

[^0]
APPLICATION INFORMATION (continued)

BU407D - application circuit for $12^{\prime \prime}$ to $17^{\prime \prime}-110^{\circ}-28 \mathrm{~mm}$ neck picture tubes (drive supply voltage $=10.8 \mathrm{~V}$).

$\cdot \mathrm{N} 1=90$ turns $00.3 \mathrm{~mm} ; \mathrm{N} 2=30$ turns $00.6 \mathrm{~mm} ; G A P=0.12 \mathrm{~mm}: C O R E=$ DOUBLE $E 19 \times 5 \times 8 \mathrm{~mm} ;$ FERRITE 3E1 TYPE

BU407D - application circuit for $12^{\prime \prime}$ to $17^{\prime \prime}-110^{\circ}-28 \mathrm{~mm}$ neck picture tubes.
(driver supply voltage $=10.8 \mathrm{~V}$).

[^1]
[^0]: － $\mathrm{N} 1=125$ turns $\oslash 0.3 \mathrm{~mm} ; \mathrm{N} 2=25$ turns $\oslash 0.6 \mathrm{~mm} ; G A P=0.12 \mathrm{~mm} ; C O R E=$ DOUBLE E $19 \times 5 \times 8 \mathrm{~mm}:$ FERRITE $3 E 1$ TYPE

[^1]: $\cdot \mathrm{N} 1=90$ turns $\varnothing 0.3 \mathrm{~mm}: \mathrm{N} 2=30$ turns $00.6 \mathrm{~mm} ; G A P=0.12 \mathrm{~mm}: C O R E=$ DOUBLE $E 19 \times 5 \times 8 \mathrm{~mm}:$ FERRITE 3E1 TVPE

