FASTSWITCH EASY-TO-DRIVE (ETD) NPN TRANSISTORS

PRELIMINARY DATA

- HIGH SWITCHING SPEED NPN POWER TRANSISTORS
- EASY TO DRIVE
- HIGH VOLTAGE FOR OFF-LINE APPLICA. TIONS
- 100 KHz SWITCHING SPEED
- LOW COST DRIVE CIRCUITS
- LOW DYNAMIC SATURATION

APPLICATIONS

- SMPS
- MOTOR DRIVES

DESCRIPTION

These Easy-to-Drive FASTSWITCH NPN power transistors are specially designed for high reliability
industrial and professional power driving applications such as motor drives and off-line switching power supplies. ETD transistors will operate using easy drive circuits at up to 100 KHz ; this helps to simplify designs and improve reliability. The superior switching performance and low crossover losses reduce dissipation and consequently lowers the equipment operating temperature. These ETD transistors are suitable for application in high reliability, low power, motor drives and in flyback and forward converters, 100 W to 250 W .
These EASY-TO-DRIVE FASTSWITCH transistors are available in the TO-220 package.

TO-220

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value		Unit
		BUF405	BUF405A	
$\mathrm{V}_{\text {CEV }}$	Collector-emitter Voltage ($\left.\mathrm{V}_{\mathrm{BE}}=-1.5 \mathrm{~V}\right)$	850	1000	V
$\mathrm{V}_{\text {CEO }}$	Coliector-emitter Voltage ($\mathrm{I}_{\mathrm{B}}=0$)	450		V
$V_{E B O}$	Emitter-base Voltage ($I_{C}=0$)	7		V
I_{C}	Collector Current	7.5		A
$I_{\text {CM }}$	Collector Peak Current	15		A
I_{B}	Base Current	3		A
$I_{\text {BM }}$	Base Peak Current	4.5		A
P_{101}	Total Dissipation at $\mathrm{T}_{\mathrm{c}}<25^{\circ} \mathrm{C}$	80		W
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to 150		${ }^{\circ} \mathrm{C}$
T_{1}	Max. Operating Junction Temperature	150		${ }^{\circ} \mathrm{C}$

THERMAL DATA

$R_{\text {thj. case }}$	Thermal Resistance Junction-case	Max	1.56

ELECTRICAL CHARACTERISTICS $\left(T_{1}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
$\begin{aligned} & t_{s} \\ & t_{1} \\ & t_{c} \end{aligned}$	Storage Time Fall Time Cross Over Time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=2.5 \mathrm{~A} \\ & \mathrm{~V}_{B B}=0 \\ & \mathrm{~V}_{\text {clamp }}=400 \mathrm{~V} \\ & \mathrm{~L}=1 \mathrm{mH} \end{aligned}$	$\begin{aligned} & V_{C C}=50 \mathrm{~V} \\ & R_{B B}=0.6 \Omega \\ & I_{B 1}=0.25 \mathrm{~A} \\ & T_{1}=100^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} 3 \\ 0.15 \\ 0.25 \end{gathered}$	
$V_{\text {CEW }}$	Maximum Collector Emitter Voltage without Snubber	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=2.5 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{BB}}=0 \\ & \mathrm{~V}_{\text {clamp }}=400 \mathrm{~V} \\ & \mathrm{~L}=1 \mathrm{mH} \end{aligned}$	$\begin{aligned} & V_{C C}=50 \mathrm{~V} \\ & R_{\mathrm{BB}}=0.6 \Omega 2 \\ & I_{B_{1}}=0.25 \mathrm{~A} \\ & T_{1}=125^{\circ} \mathrm{C} \end{aligned}$	500			V
$\begin{aligned} & t_{s} \\ & t_{1} \\ & i_{c} \end{aligned}$	Storage Time Fall Time Cross Over Time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=5 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\text {clamp }}=400 \mathrm{~V} \\ & \mathrm{~L}=0.5 \mathrm{mH} \end{aligned}$	$\begin{aligned} & V_{C C}=50 \mathrm{~V} \\ & R_{B B}=2.4 \Omega \\ & I_{B_{1}}=1 \mathrm{~A} \end{aligned}$		$\begin{gathered} 1.9 \\ 0.06 \\ 0.12 \end{gathered}$		$\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{S}$
$\begin{aligned} & t_{\mathrm{s}} \\ & t_{1} \\ & t_{\mathrm{c}} \end{aligned}$	Storage Time Fall Time Cross Over Time	$\begin{aligned} & \mathrm{I} c=5 \mathrm{~A} \\ & V_{B B}=-5 \mathrm{~V} \\ & V_{\text {clamp }}=400 \mathrm{~V} \\ & L=0.5 \mathrm{mH} \end{aligned}$	$\begin{aligned} & V_{C C}=50 \mathrm{~V} \\ & R_{B B}=2.4 \Omega \\ & I_{B 1}=1 \mathrm{~A} \\ & T_{1}=100^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			$\begin{gathered} 3.2 \\ 0.12 \\ 0.3 \end{gathered}$	$\mu \mathrm{S}$ $\mu \mathrm{S}$ $\mu \mathrm{S}$
$V_{\text {CEW }}$	Maximum Collector Emitter Voltage without Snubber	$\begin{aligned} & I_{\text {CWOII }}=7.5 \mathrm{~A} \\ & \mathrm{~V}_{\text {BB }}=-5 \mathrm{~V} \\ & \mathrm{~L}=0.33 \mathrm{mH} \\ & \mathrm{~T}_{i}=125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & I_{B 1}=1.5 \mathrm{~A} \\ & V_{C C}=50 \mathrm{~V} \\ & R_{B B}=2.4 S 2 \end{aligned}$	400			V

Turn-on Switching Test Circuit.

(1) Fast electronic switch
(2) Non-inductive Resistor

Turn-off Switching Test Circuit.

(1) Fast electronic switch
(2) Non-inductive Resistor
(3) Fast recovery rectifier

Turn-on Switching Test Waveforms.

Turn-off Switching Waveforms (inductive load).

Forward Biased Safe Operating Areas.

Reverse Biased Safe Operating Areas.

