BUH515FP

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- HIGH VOLTAGE CAPABILITY
- FULLY MOLDED ISOLATED PACKAGE
- 2000 V DC ISOLATION (U.L. COMPLIANT)

APPLICATIONS:

- HORIZONTAL DEFLECTION FOR COLOUR TV AND MONITORS
- SWITCH MODE POWER SUPPLIES

DESCRIPTION

The BUH515FP is manufactured using Multiepitaxial Mesa technology for cost-effective high performance and uses a Hollow Emitter structure to enhance switching speeds.
The BUH series is designed for use in horizontal deflection circuits in televisions and monitors.

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {CBO }}$	Collector-Base Voltage ($\mathrm{I}_{\mathrm{E}}=0$)	1500	V
$\mathrm{V}_{\text {CEO }}$	Collector-Emitter Voltage ($\mathrm{I}_{\mathrm{B}}=0$)	700	V
VEBO	Emitter-Base Voltage ($\mathrm{lc}=0$)	10	V
I_{C}	Collector Current	8	A
ICM	Collector Peak Current ($\mathrm{t}_{\mathrm{p}}<5 \mathrm{~ms}$)	12	A
IB	Base Current	5	A
I_{BM}	Base Peak Current ($\mathrm{t}_{\mathrm{p}}<5 \mathrm{~ms}$)	8	A
$\mathrm{P}_{\text {tot }}$	Total Dissipation at $\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	38	W
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
T_{j}	Max. Operating Junction Temperature	150	${ }^{\circ} \mathrm{C}$

THERMAL DATA

$R_{\text {thj-case }}$	Thermal Resistance Junction-case	Max	3.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
ICES	Collector Cut-off Current (V be $=0$)	$\begin{array}{ll} \mathrm{V}_{C E}=1500 \mathrm{~V} & \\ \mathrm{~V}_{C E}=1500 \mathrm{~V} & \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C} \end{array}$			$\begin{gathered} 0.2 \\ 2 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\text {ebo }}$	Emitter Cut-off Current ($\mathrm{IC}=0$)	$\mathrm{V}_{\text {EB }}=5 \mathrm{~V}$			100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CEO }}$ (sus)	Collector-Emitter Sustaining Voltage	$\mathrm{IC}_{\mathrm{c}}=100 \mathrm{~mA}$	700			V
Vebo	Emitter-Base Voltage $\left(I_{C}=0\right)$	$\mathrm{IE}_{\mathrm{E}}=10 \mathrm{~mA}$	10			V
$\mathrm{V}_{\text {CE(sat)* }}$	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{C}}=5 \mathrm{~A} \quad \mathrm{IB}=1.25 \mathrm{~A}$			1.5	V
$V_{\text {be(sat)* }}$	Base-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{C}}=5 \mathrm{~A} \quad \mathrm{IB}=1.25 \mathrm{~A}$			1.3	V
$\mathrm{h}_{\text {FE* }}$	DC Current Gain	$\begin{array}{lll} \hline \mathrm{I} \mathrm{C}=5 \mathrm{~A} & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} & \\ \mathrm{I}_{\mathrm{C}}=5 \mathrm{~A} & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} & \mathrm{~T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & \hline 6 \\ & 4 \\ & \hline \end{aligned}$		12	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{tf}^{2} \end{aligned}$	RESISTIVE LOAD Storage Time Fall Time	$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{CC}}=400 \mathrm{~V} & \mathrm{I}_{\mathrm{C}}=5 \mathrm{~A} \\ \mathrm{I}_{\mathrm{B} 1}=1.25 \mathrm{~A} & \mathrm{I}_{\mathrm{B} 2}=2.5 \mathrm{~A} \end{array}$		$\begin{aligned} & 2.7 \\ & 190 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 280 \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$	INDUCTIVE LOAD Storage Time Fall Time	$\begin{array}{ll} \hline I_{C}=5 \mathrm{~A} & \mathrm{f}=15625 \mathrm{~Hz} \\ \mathrm{I}_{\mathrm{B} 1}=1.25 \mathrm{~A} & \mathrm{I}_{\mathrm{B} 2}=-1.5 \mathrm{~A} \\ \mathrm{~V}_{\text {ceflyback }}=1050 \sin \left(\frac{\pi}{5} 10^{6}\right) \mathrm{t} & \mathrm{~V} \end{array}$		$\begin{aligned} & 2.3 \\ & 350 \end{aligned}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{tf}^{2} \end{aligned}$	INDUCTIVE LOAD Storage Time Fall Time	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{C}}=5 \mathrm{~A} \quad \mathrm{f}=31250 \mathrm{~Hz} \\ & \mathrm{I}_{\mathrm{B} 1}=1.25 \mathrm{~A} \quad \mathrm{I}_{\mathrm{B} 2}=-1.5 \mathrm{~A} \\ & \mathrm{~V}_{\text {ceflyback }}=1200 \sin \left(\frac{\pi}{5} 10^{6}\right) \mathrm{t} \end{aligned}$		$\begin{aligned} & 2.3 \\ & 200 \end{aligned}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mathrm{~ns} \end{aligned}$

* Pulsed: Pulse duration = $300 \mu \mathrm{~s}$, duty cycle 1.5%

Safe Operating Area

Thermal Impedance

Derating Curve

Collector Emitter Saturation Voltage

Power Losses at 16 KHz

DC Current Gain

Base Emitter Saturation Voltage

Switching Time Inductive Load at 16 KHz (see figure 2)

Power Losses at 32 KHz

Reverse Biased SOA

BASE DRIVE INFORMATION

In order to saturate the power switch and reduce conduction losses, adequate direct base current $\mathrm{I}_{\mathrm{B} 1}$ has to be provided for the lowest gain hFE at $100{ }^{\circ} \mathrm{C}$ (line scan phase). On the other hand, negative base current $\mathrm{I}_{\mathrm{B} 2}$ must be provided to turn off the power transistor (retrace phase).
Most of the dissipation, in the deflection application, occurs at switch-off. Therefore it is essential to determine the value of $\mathrm{I}_{\mathrm{B} 2}$ which minimizes power losses, fall time tf_{f} and, consequently, T_{j}. A new set of curves have been defined to give total power losses, t_{s} and t_{f} as a function of lB2 at both 16 KHz and 32 KHz scanning frequencies for choosing the optimum negative drive. The test circuit is illustrated in

Switching Time Inductive Load at 32 KHz (see figure 2)

Switching Time Resistive Load

figure 1.
Inductance L_{1} serves to control the slope of the negative base current lB2 to recombine the excess carrier in the collector when base current is still present, this would avoid any tailing phenomenon in the collector current.
The values of L and C are calculated from the following equations:
$\frac{1}{2} L(I C)^{2}=\frac{1}{2} C\left(V_{C E f l y}\right)^{2} \quad \omega=2 \pi f=\frac{1}{\sqrt{L C}}$
Where $\mathrm{I}_{\mathrm{C}}=$ operating collector current, $\mathrm{V}_{\text {CEfly }}=$ flyback voltage, $\mathrm{f}=$ frequency of oscillation during retrace.

Figure 1: Inductive Load Switching Test Circuit.

Figure 2: Switching Waveforms in a Deflection Circuit

TO-220FP MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	4.4		4.6	0.173		0.181
B	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
E	0.45		0.7	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.7	0.045		0.067
F2	1.15		1.7	0.045		0.067
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
H	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	0.385		0.417
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
\varnothing	3		3.2	0.118		0.126

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.
© 1998 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

