

BUX47/V47/V47FI BUX47A/V47A/47AFI

HIGH VOLTAGE POWER SWITCH

ESCRIPTION

BUX47/A, BUV47/A, BUV47FI/AFI are silicon epitaxial mesa NPN transistors mounted resepily in TO-3 metal case, TO-218 plastic age and ISOWATT218 fully isolated package.

are intended for high voltage, fast switching cations.

BSOLUTE MAXIMUM RATINGS

		Value				
Symbol	Parameter	BUX47 BUV47 BUV47FI		BUX47A BUV47A BUV47AFI	Unit	
VCER	Collector-emitter Voltage ($R_{BE} = 10 \Omega$)	850	850 1000		V	
VCES	Collector-emitter Voltage (VBE = 0)	850		900	V	
VCEO	Collector-emitter Voltage (I _B = 0)	400 450		450	V	
VEBO	Emitter-base Voltage (I _C = 0)		V			
Ic	Collector Current	9			Α	
Ісм	Collector Peak Current (to < 5 ms)	15			A	
I _B	Base Current		Α			
IBM	Base Peak Current (tp < 5 ms)	10			Α	
		TO-3	TO-218	ISOWATT218		
Ptot	Total Dissipation at T _c < 25 °C	125	100	55	W	
Tstg	Storage Temperature	- 65 to 175	- 65 to 150	- 65 to 150	°C	
T,	Max. Operating Junction Temperature	175	150	150	°C	

BUX47/BUV47/BUV47FI-BUX47A/BUV47A/BUV47AFI

THERMAL DATA

			TO-3	TO-218	ISOWATT218	
Rth j-case	Thermal Resistance Junction-case	max	1.2	1.25	2.27	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \ ^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
ICER	Collector Cutoff Current $(R_{BE} = 10 \Omega)$	V _{CE} = 850 V V _{CE} = 850 V T _{case} = 125 °C			0.4 3	mA mA
ICEV	Collector Cutoff Current $(V_{BE} = -2.5 \text{ V})$	V _{CE} = 850 V V _{CE} = 850 V T _{case} = 125 °C			0.15 1.5	mA mA
IEBO	Emitter Cutoff Current (I _C = 0)	$V_{EB} = 5 V$			1	mA
V _{CEO(sus)} *	Collector-emitter Sustaining Voltage $(I_B = 0)$	I _C = 0.2 A L = 25 mH for BUX47/BUV47/BUV47FI for BUX47A/BUV47A/BUV47AFI	400 450			V V
VEBO	Emitter-base Voltage (I _C = 0)	I _E = 50 mA	7		30	V
V _{CE(sat)} *	Collector-emitter Saturation Voltage	$ \begin{array}{l} \mbox{for BUX47A/BUV47A/BUV47AFI} \\ I_C = 5 \ A & I_B = 1 \ A \\ I_C = 8 \ A & I_B = 2.5 \ A \\ \mbox{for BUX47/BUV47/BUV47FI} \\ I_C = 6 \ A & I_B = 1.2 \ A \\ I_C = 9 \ A & I_B = 3 \ A \end{array} $			1.5 3 1.5 3	V V V V
V _{BE(sat)} *	Base-emitter Saturation Voltage				1.6 1.6	v v

RESISTIVE SWITCHING TIMES (see fig. 1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
ton	Turn-on Time	for BUX47A/BUV47A/BUV47AFI			0.7	μs
ts	Storage Time	I _C = 5 A V _{CC} = 150 V			3	μs
tr	Fall Time	$I_{B1} = -I_{B2} = 1 A$			0.8	μs
ton	Turn-on Time	for BUX47/BUV47/BUV47FI			0.8	μs
ts	Storage Time	I _C = 6 A V _{CC} = 150 V			2.5	μs
tr	Fall Time	$I_{B1} = -I_{B2} = 1.2 \text{ A}$			0.8	μs

INDUCTIVE SWITCHING TIMES (see fig. 2)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
tr	Fall Time	I _C = 5 A V _{BE} = 5 V L = 3 μH	I _{B1} = 1 A V _{CC} = 300 V T _j = 100 °C			0.5	μs

Pulsed : pulse duration ≤ 300 µs, duty cycle ≤ 1.5 %.

Safe Operating Areas (TO-3).

Clamped Reverse Bias Safe Operating Areas.

DC Current Gain.

Safe Operating Areas (TO-218, ISOWATT218).

Forward Biased Accidental Overload Area (see fig. 3).

Saturation Voltage.

Collector-emitter Saturation Voltage.

Switching Times Percentage Variation vs. Case Temperature.

Switching Times Inductive Load (see fig. 2).

Collector Current Spread vs. Base Emitter Voltage.

Switching Times Resistive Load (see fig. 1).

Switching Times Inductive Load vs. Case Temperature.

Fall Times vs. Lb (see fig. 2).

Dynamic Collector-emitter Saturation Voltage (see fig. 4). G -5250 G-5249 VCE(sat) ü (V) 11 IC=5A

=

11

41

11

1

b with C=50nF c with C=100nF

lon2 (µm)

without speed-up capacitor

2

з

Figure 1 : Switching Times Test Circuit on Resistive Load.

BUX47/BUV47/BUV47FI-BUX47A/BUV47A/BUV47AFI

Figure 2 : Switching Times Test Circuit on Inductive Load. With and without Antisaturation Network.

Figure 5 : Equivalent Input Schematic Circuit at Turn-on.

BUX47/BUV47/BUV47FI-BUX47A/BUV47A/BUV47AFI

Figure 6 : Remarks to VCE (sat) Dyn. Test Circuit (fig. 4).

The speed-up capacitor decreases the $V_{CE (sat)}$ dyn. as shown in diagram (figure 6). The 50 nF capacitor modifies the shape of base current with a overshoot.

ISOWATT218 PACKAGE CHARACTERISTICS AND APPLICATION

SOWATT218 is fully isolated to 4000V dc. Its thermal impedance, given in the data sheet, is optimised to give efficient thermal conduction together with excellent electrical isolation. The structure of the case ensures optimum distances between the pins and heatsink. These distances are in agreement with VDE and UL creepage and clearance standards. The ISOWATT218 package eliminates the need for external isolation so reducing fixing hardware.

The package is supplied with leads longer than the standard TO-218 to allow easy mounting on pcbs.

THERMAL IMPEDANCE OF ISOWATT218 PACKAGE

Fig. 7 illustrates the elements contributing to the thermmal resistance of a transistor heatsink assembly, using ISOWATT218 package.

The total thermal resistance $R_{th(tot)}$ is the sum of each of these elements. The transient thermal impedance, Z_{th} for different pulse durations can be estimated as follows :

1 - For a short duration power pulse of less than 1ms :

 $Z_{th} < R_{thJ-C}$

 $\ensuremath{\text{2}}$ - For an intermediate power pulse of 5ms to 50ms seconds :

 $Z_{th} = R_{thJ-C}$

Accurate moulding techniques used in manufacture assures consistent heat spreader-to-heatsink capacitance.

ISOWATT218 thermal performance is equivalent to that of the standard part, mounted with a 0.1mm mica washer. The thermally conductive plastic has a higher breakdown rating and is less fragile than mica or plastic sheets. Power derating for ISO-WATT218 packages is determined by :

$$= \frac{T_j - T_c}{R_{th}}$$

Po

3 - For long power pulses of the order of 500ms seconds or greater :

 $Z_{th} = R_{thJ-C} + R_{thC-HS} + R_{thHS-amb}$

It is often possible to discern these areas on transient thermal impedance curves.

Figure 7.

Bth.I-C BthC-HS BthHS-amb

