BUW48 BUW49

NPN HIGH CURRENT SWITCHING TRANSISTORS

- HIGH CURRENT CAPABILITY
- VERY LOW SATURATION VOLTAGE AT $l_{c}=20 A$
- FAST TURN-ON AND TURN-OFF

APPLICATIONS

- HIGH FREQUENCY AND EFFICENCY CONVERTERS
- SWITCHING REGULATORS
- MOTOR CONTROLS

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value		Unit
		BUW48	BUW49	
$V_{C B O}$	Collector-base Voltage $\left(I_{E}=0\right)$	120	160	V
$\mathrm{~V}_{\text {CEO }}$	Collector-emitter Voltage $\left(\mathrm{I}_{\mathrm{B}}=0\right)$	60	80	V
$\mathrm{~V}_{\mathrm{EBO}}$	Emitter-base Voltage $\left(\mathrm{I}_{\mathrm{C}}=0\right)$	7	7	V
I_{C}	Collector Current	30	30	A
I_{CM}	Collector Peak Current $\left(t_{p}<10 \mathrm{~ms}\right)$	45	40	A
I_{B}	Base Current	8	6	A
I_{BM}	Base Peak Current $\left(t_{p}<10 \mathrm{~ms}\right)$	12	10	A
$\mathrm{P}_{\text {tot }}$	Total Dissipation at $\mathrm{T}_{\mathrm{C}}<25^{\circ} \mathrm{C}$		150	W
$\mathrm{~T}_{\text {Stg }}$	Storage Temperature	-65 to 175	${ }^{\circ} \mathrm{C}$	
T_{1}	Max. Operating Junction Temperature		175	${ }^{\circ} \mathrm{C}$

BUW48/BUW49

THERMAL DATA

$R_{\text {thi-case }}$	Thermal Resistance Junction-case	Max	1	${ }^{2} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
ICEX	Collector Cutoff Current	$\begin{aligned} & V_{C E}=V_{\text {CEX }} V_{B E}=-1.5 \mathrm{~V} \\ & V_{C E}=V_{C E X} \quad V_{B E}=-1.5 \mathrm{~V} T_{C}=125^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Iebo	Emitter Cutoff Current ($\mathrm{I}_{\mathrm{C}}=0$)	$V_{E 日}=5 \mathrm{~V}$			1	mA
$\mathrm{V}_{\text {CEO(sus) }}{ }^{\text {a }}$	Collector Emitter Sustaining Voltage	$I_{C}=0.2 A$ $L=25 \mathrm{mH}$ for BUW48 for BUW49	$\begin{aligned} & 60 \\ & 80 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$V_{\text {Ebo }}$	Emitter-base Voltage ($\mathrm{I}_{\mathrm{C}}=0$)	$\mathrm{I}_{E}=50 \mathrm{~mA}$	7			V
$\mathrm{V}_{C E \text { (sat) }}{ }^{\text {* }}$	Collector-emitter Saturation Voltage	$I_{C}=20 A$ $I_{B}=2 A$ for BUW48 $I_{C}=40 A$ $I_{B}=4 A$ for BUW48 $I_{C}=15 A$ $I_{B}=1.5 A$ for BUW49 $I_{C}=30 A$ $I_{B}=3 A$ for BUW49			$\begin{aligned} & 0.6 \\ & 1.4 \\ & 0.5 \\ & 1.2 \\ & \hline \end{aligned}$	$\begin{aligned} & V \\ & v \\ & v \\ & v \end{aligned}$
$V_{\text {bE (sat) }}$ *	Base-emitter Saturation Voltage	$I_{C}=40 A$ $I_{B}=4 A$ for BUW48 $I_{C}=30 A$ $I_{B}=3 A$ for BUW49			$\begin{gathered} 2.1 \\ 2 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
f_{T}	Transition Frequency	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A} \quad \mathrm{~V}_{C E}=15 \mathrm{~V} \quad \mathrm{f}=1 \mathrm{MHz}$		8		MHz

RESISTIVE LOAD

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\begin{aligned} & t_{\text {on }} \\ & t_{\mathrm{s}} \\ & t_{1} \end{aligned}$	Turn-on Time Storage Time Fall Time	for BUW48 $\begin{array}{ll} V_{C C}=60 \mathrm{~V} & \mathrm{I}_{\mathrm{C}}=40 \mathrm{~A} \\ \mathrm{I}_{\mathrm{B} 1}=-\mathrm{I}_{\mathrm{B} 2}=4 \mathrm{~A} & \\ \hline \end{array}$		$\begin{gathered} \hline 1.2 \\ 0.6 \\ 0.17 \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 1.1 \\ 0.25 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{S} \\ & \mu \mathrm{~S} \\ & \mu \mathrm{~S} \end{aligned}$
$\begin{aligned} & t_{s} \\ & t_{1} \end{aligned}$	Storage Time Fall Time	for BUW48 $\begin{array}{ll} V_{C C}=60 \mathrm{~V} & I_{C}=40 \mathrm{~A} \\ I_{B 1}=-I_{B 2}=4 \mathrm{~A} & \\ \hline \end{array}$			$\begin{gathered} 1.65 \\ 0.5 \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
$\begin{aligned} & t_{0 n} \\ & t_{s} \\ & t_{1} \end{aligned}$	Turn-on Time Storage Time Fall Time	for BUW49 $\begin{array}{ll} V_{C C}=80 \mathrm{~V} & I_{C}=30 \mathrm{~A} \\ I_{B 1}=-I_{B 2}=3 A & \\ \hline \end{array}$		$\begin{gathered} 0.8 \\ 0.6 \\ 0.15 \\ \hline \end{gathered}$	$\begin{gathered} 1.2 \\ 1.1 \\ 0.25 \\ \hline \end{gathered}$	$\mu \mathrm{s}$ $\mu \mathrm{S}$ $\mu \mathrm{S}$
$\begin{aligned} & t_{s} \\ & t_{t} \end{aligned}$	Storage Time Fall Time	for BUW49 $\begin{array}{ll} V_{C C}=80 \mathrm{~V} & I_{C}=30 \mathrm{~A} \\ I_{B 1}=-I_{B 2}=3 A & \end{array}$			$\begin{gathered} 1.65 \\ 0.5 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{S} \\ & \mu \mathrm{~S} \end{aligned}$

[^0]DC and Pulse Area.

Power and IS/B Derating vs. Case Temperature.

Collector-emitter Voltage vs. Base-emitter Resistance.

DC and Pulse Area.

Transient Thermal Response.

DC Current Gain.

Minimum Base Current to Saturate theTransistor.

Collector Saturation Region.

Collector Current Spread vs. Base Emitter Voltage.

Base Characteristics.

Saturation Voltage.

DC Current Gain.

Minimum Base Current to saturate the Transistor.

Collector Saturation Region.

Collector Current Spread vs. Base Emitter Voltage.

Base Characteristics.

Saturation Voltage.

SWITCHING OPERATING AND OVERLOAD AREAS

TRANSISTOR FORWARD BIASED

- During the turn on
- During the turn off without negative baseemitter voltage and $R_{B E} \geq 5 \Omega$

Forward Biased Safe Operating Area (FBSOA).

The hatched zone can only be used for turn on. Forward Biased Accidental Overload Area (FBAOA).

The Kellog network (heavy print) allows the calculation of the maximum value of the short-circuit current for a given base current lb (90% confidence).
High accidental surge currents ($1>$ ICM) are allowed if they are non repetitive and applied less than 3000 times during the component life.

TRANSISTOR REVERSE BIASED

- During the turn off without negative baseemitter volige

Reverse Biased Safe Operating Area (RBSOA).

Reverse Biased Accidental Overload Area (RBAOA).

After the accidental overload current, the RBAOA has to be used for the turn off.

Forward Biased Safe Operating Area (FBSOA).

The hatched zone can only be used for turn on.
Figure 25 : Forward Biased Accidental Overload Area (FBAOA).

The Kellog network (heavy print) allows the calculation of the maximum value of the short-circuit current for a given base current lı (90% confidence).

Reverse Biased Safe Operating Area (RBSOA).

Figure 26 : Reverse Biased Accidental Overload Area (RBAOA).

After the accidental overload current, the RBAOA has to be used for the turn off.

High accidental surge currents (1 > ICM) are allowed if they are non repetitive and applied less than 3000 times during the component life.

Switching Times vs. Collector Current (resistive load).

Switching Times vs. Junction Temperature.

Switching Times vs. Collector Current (inductive load).

Switching Times vs. Collector Current (resistive load).

Switching Times vs. Collector Current (inductive load).

[^0]: * Pulsed : Pulse duration $=300 \mathrm{us}$. duty cycle $=1.5 \%$.

