HIGH VOLTAGE FAST SWITCHING

ADVANCE DATA

DESCRIPTION

The BUX98 and BUX98A are silicon multiepitaxial mesa NPN transistors in Jedec TO-3 metal-case in:ended and industrial applications from single and three-phase mains operation.

INTERNAL SCHEMATIC DIAGRAMS

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value		Unit
		BUX98	BUX98A	
$V_{\text {CER }}$	Collector-emitter Voltage ($\mathrm{R}_{\mathrm{BE}} \leq 10 \Omega$)	850	1000	V
$V_{\text {CES }}$	Collector-base Voltage ($\mathrm{V}_{\mathrm{BE}}=0$)	850	1000	V
$\mathrm{V}_{\text {CEO }}$	Collector-emitter Voltage ($\mathrm{I}_{\mathrm{B}}=0$)	400	450	V
$\mathrm{V}_{\text {EBO }}$	Emitter-base Voltage ($\mathrm{I}_{\mathrm{C}}=0$)	7		V
Ic	Collector Current	30		A
ICM	Collector Peak Current ($t_{p}<5 \mathrm{~ms}$)	60		A
ICP	Collector Peak Current non Rep. ($t_{p}<20 \mu \mathrm{~s}$)	80		A
l_{B}	Base Current	8		A
$I_{B M}$	Base Peak Current ($t_{p}<5 \mathrm{~ms}$)	30		A
P_{101}	Total Power Dissipation at $\mathrm{T}_{\text {case }}<25^{\circ} \mathrm{C}$	250		W
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to 200		${ }^{\circ} \mathrm{C}$
T	Junction Temperature	200		${ }^{\circ} \mathrm{C}$

THERMAL DATA

R $_{\text {th j case }}$	Thermal Resistance Junction-case	Max	0.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS(T $_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
ICER	Collector Cutoff Current $\left(\mathrm{R}_{\mathrm{BE}}=10 \Omega\right)$	$\begin{aligned} & V_{C E}=V_{C E S} \\ & V_{C E}=V_{C E S} \end{aligned}$	$\mathrm{T}_{\text {case }}=125^{\circ} \mathrm{C}$			$\begin{aligned} & 1 \\ & 8 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
Ices	Collector Cutoff Current $\left(V_{B E}=0\right)$	$\begin{aligned} & V_{C E}=V_{C E S} \\ & V_{C E}=V_{C E S} \end{aligned}$	$\mathrm{T}_{\text {case }}=125^{\circ} \mathrm{C}$			$\begin{gathered} 400 \\ 4 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
Iceo	Collector Cutoff Current $\left(I_{B}=0\right)$	$V_{C E}=V_{\text {CEO }}$				2	mA
Iebo	Emitter Cutoff Current $\left(I_{C}=0\right)$	$\mathrm{V}_{\mathrm{EB}}=5 \mathrm{~V}$				2	mA
$\mathrm{V}_{\text {CEO(sus) }}{ }^{\circ}$	Collector-emitter Sustaining Voltage	$\begin{aligned} & I_{\mathrm{C}}=200 \mathrm{~mA} \\ & \text { for BUX98 } \\ & \text { for BUX98A } \end{aligned}$		$\begin{aligned} & 400 \\ & 450 \end{aligned}$			$\begin{aligned} & V \\ & V \end{aligned}$
$\mathrm{V}_{\text {CER }}$ (sus) ${ }^{*}$	Collector-emitter Sustaining Voltage	$\begin{aligned} & \mathrm{L}=2 \mathrm{mH} \\ & \text { for BUX98 } \\ & \text { for BUX98A } \end{aligned}$	$I_{C}=1 \mathrm{~A}$	$\begin{gathered} 850 \\ 1000 \end{gathered}$			$\begin{aligned} & V \\ & V \end{aligned}$
$\mathrm{V}_{\text {CE(sat) }}{ }^{\text {- }}$	Collector-emitter Saturation Voltage	for BUX98 $I_{C}=20 \mathrm{~A}$ for BUX98A $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=16 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{C}}=24 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{B}}=4 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B}}=3.2 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B}}=5 \mathrm{~A} \end{aligned}$			$\begin{gathered} 1.5 \\ 1.5 \\ 5 \end{gathered}$	$\begin{aligned} & V \\ & v \\ & v \end{aligned}$
$V_{C E(\text { sat })}{ }^{\text {a }}$	Collector-emitter Saturation Voltage	for BUX98 $I_{C}=20 \mathrm{~A}$ for BUX98A $\mathrm{I}_{\mathrm{C}}=16 \mathrm{~A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{B}}=4 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B}}=3.2 \mathrm{~A} \end{aligned}$			$\begin{array}{r} 1.6 \\ 1.6 \end{array}$	$\begin{aligned} & V \\ & V \\ & \hline \end{aligned}$
$t o n$	Turn-on Time					1	$\mu \mathrm{s}$
t_{s}	Storage Time	BUX98	$V_{c c}=150 \mathrm{~V}$			3	us
t_{1}	Fall Time					0.8	$\mu \mathrm{s}$
Ion	Turn-on Time					1	$\mu \mathrm{s}$
t_{s}	Storage Time	for BUX98A	$V_{C C}=150 \mathrm{~V}$			3	us
11	Fall Time					0.8	$\mu \mathrm{s}$

- Pulsed : pulse duration $=300 \mu \mathrm{~s}$, duty cycle $=1.5 \%$.

