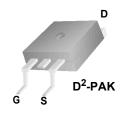
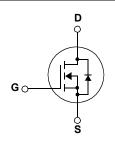


February 2011

FDB110N15A N-Channel PowerTrench[®] MOSFET 150V, 92A, 11mΩ

Features


- $R_{DS(on)} = 9.25m\Omega$ (Typ.)@ $V_{GS} = 10V$, $I_D = 92A$
- · Fast Switching Speed
- · Low Gate Charge
- High Performance Trench Technology for Extremely Low $R_{\text{DS}(\text{on})}$
- High Power and Current Handling Capability
- RoHS Compliant

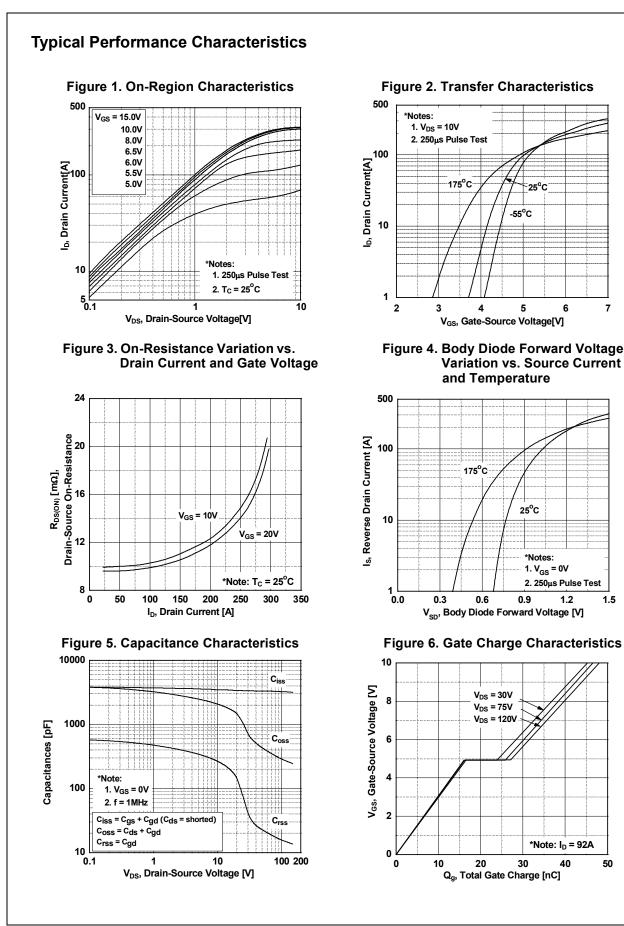

Description

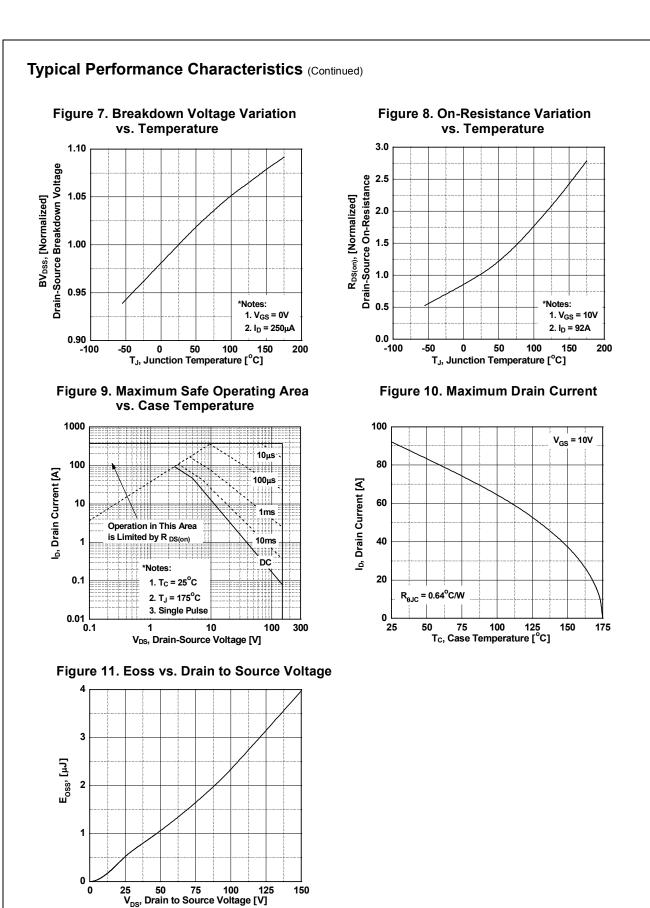
This N-Channel MOSFET is produced using Fairchild Semiconductor's advance PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

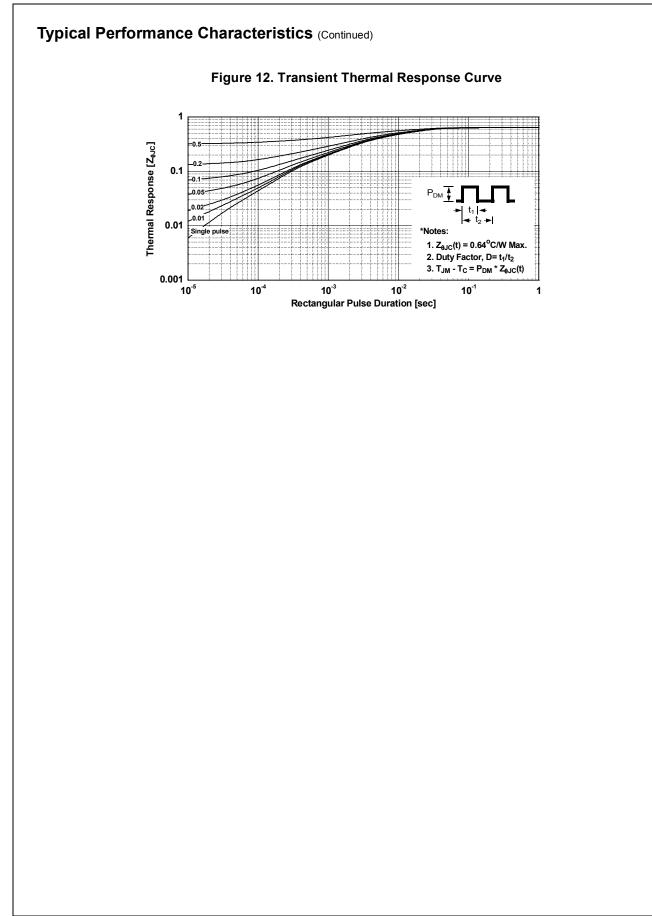
Application

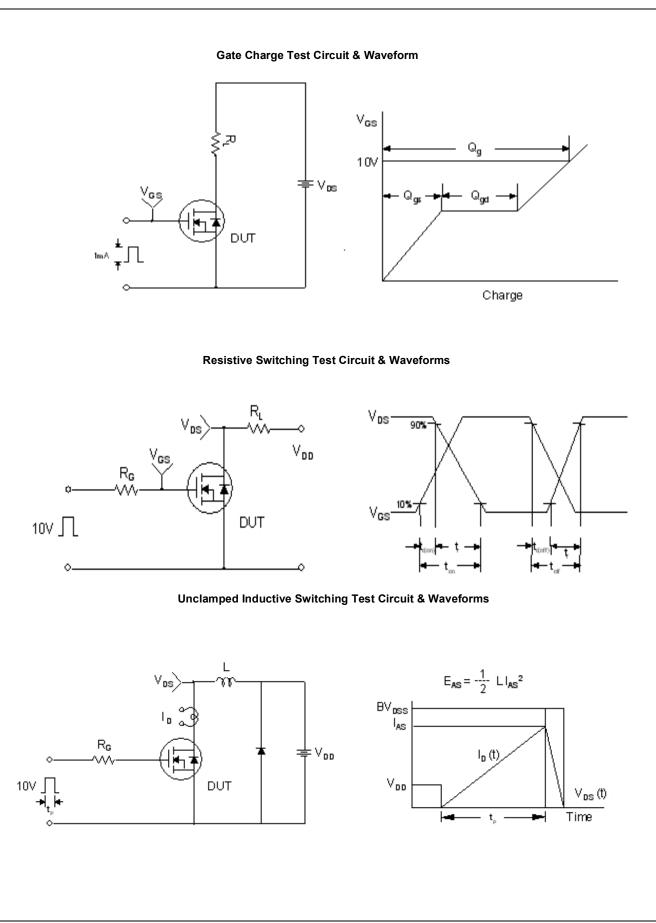
- DC to DC Converters
- Synchronous Rectification for Telecommunication PUS
- Battery Charger
- AC Motor Drives and Uninterruptible Power Supplies
- Off-line UPS

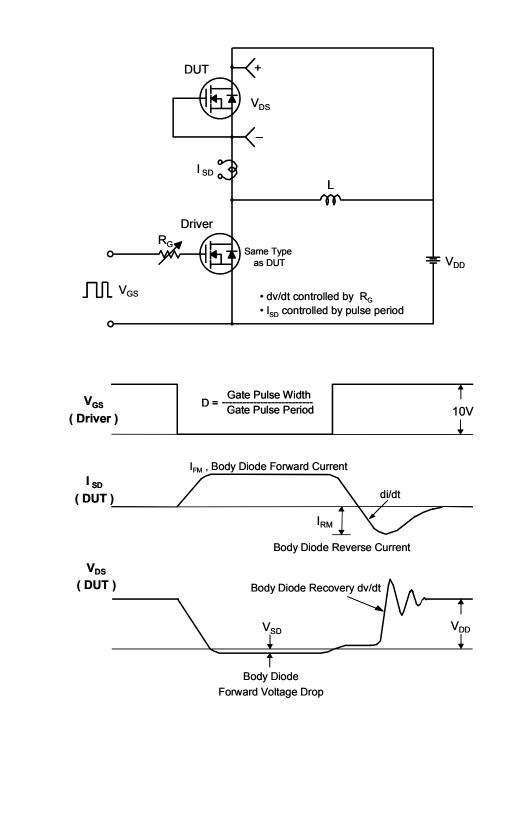
MOSFET Maximum Ratings T_C = 25°C unless otherwise noted

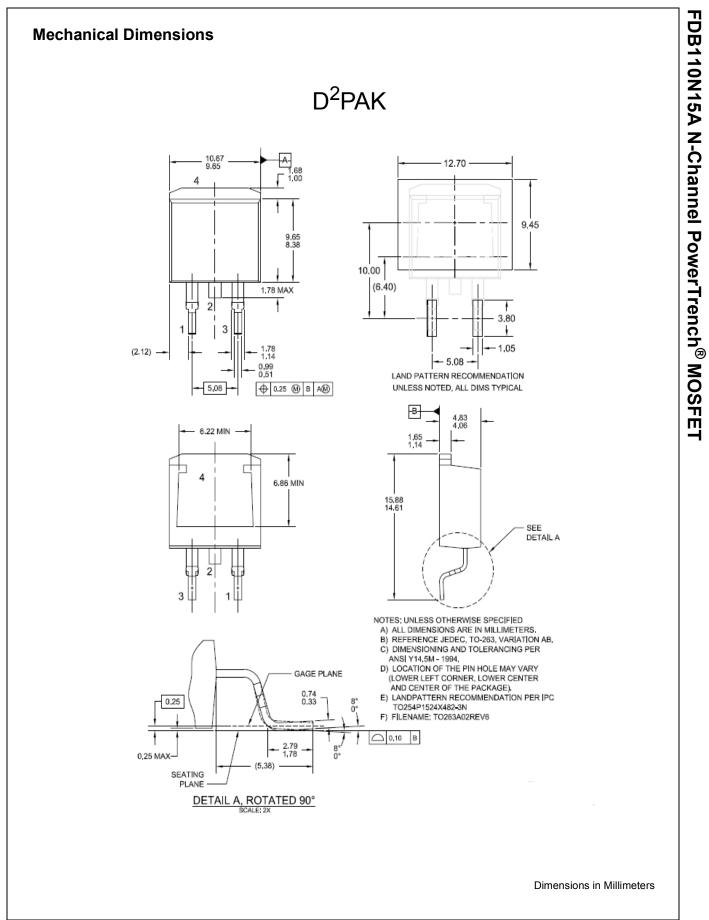

Symbol	Parameter			Ratings	Units
V _{DSS}	Drain to Source Voltage			150	V
V _{GSS}	Gate to Source Voltage			±20	V
I _D	Drain Current	-Continuous (T _C = 25 ^o C)		92	Α
		-Continuous (T _C = 100 ^o C)		65	
I _{DM}	Drain Current	- Pulsed	(Note 1)	369	А
E _{AS}	Single Pulsed Avalanche Er	nergy	(Note 2)	365	mJ
dv/dt	Peak Diode Recovery dv/dt		(Note 3)	6.0	V/ns
P _D	Power Dissipation	(T _C = 25°C)		234	W
		- Derate above 25°C		1.56	W/ºC
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +175	°C
TL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			300	°C


Thermal Characteristics


Symbol	Parameter	Ratings	Units	
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	0.64	°C/W	
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient	62.5		


DB110N15A Pristics T _C = Parameter Ce Breakdown Vo Datage Temperatu Itage Drain Currer Leakage Curren Id Voltage D Source On Res sconductance CS ance itance sfer Capacitance d Output Capacit arge at 10V re Gate Charge Threshold to Plar "Miller" Charge	ioltage ure ent sistance e tance	otherwise $I_D = 250\mu$ $I_D = 250\mu$ $V_{DS} = 12$ $V_{GS} = 12$ $V_{GS} = 12$ $V_{GS} = 10$ $V_{DS} = 10$ $V_{DS} = 10$ $V_{DS} = 10$ $V_{DS} = 10$	Test Conditions IA, $V_{GS} = 0V$ IA, Referenced to $0V, V_{GS} = 0V$ $0V, T_C = 150^{\circ}C$ $0V, V_{DS} = 0V$ $0V, V_{DS} = 0V$ $D_{S}, I_D = 250\mu A$ $V, I_D = 92A$ $V, I_D = 92A$ $V, V_{GS} = 0V$	\$	4mm Min. 150 - - - 2.0 - - - - - - - - - - - - -	Typ. - 0.09 - - 9.25 118 3390 334 14 583 47	800 Max. - - - 1 500 ±100 4.0 11.0 - - 4510 445 - - 61	Units V V/ ^o C μA nA N M S S PF pF pF pF
Parameter	ioltage ure ent sistance e tance	$ I_{D} = 250\mu$ $ I_{D} = 250\mu$ $ V_{DS} = 12$ $ V_{DS} = 12$ $ V_{GS} = \pm 2$ $ V_{GS} = 10$ $ V_{DS} = 10$ $ V_{DS} = 75$ $ f = 1MHz$ $ V_{DS} = 75$ $ V_{CS} = 10$ $ V_{CS} = 10$	Test Conditions IA, $V_{GS} = 0V$ IA, Referenced to $0V, V_{GS} = 0V$ $0V, T_C = 150^{\circ}C$ $0V, V_{DS} = 0V$ $0V, V_{DS} = 0V$ $0V, I_D = 92A$ $V, I_D = 92A$ $V, V_{GS} = 0V$ $0V, V_{GS} = 0V$	9 25°C	150 - - - 2.0 -	- 0.09 - - 9.25 118 3390 334 14 583	- - 1 500 ±100 4.0 11.0 - 4510 445 - -	V V/°C μA nA V mΩ S PF pF pF
Parameter	ioltage ure ent sistance e tance	$ I_{D} = 250\mu$ $ I_{D} = 250\mu$ $ V_{DS} = 12$ $ V_{DS} = 12$ $ V_{GS} = \pm 2$ $ V_{GS} = 10$ $ V_{DS} = 10$ $ V_{DS} = 75$ $ f = 1MHz$ $ V_{DS} = 75$ $ V_{CS} = 10$ $ V_{CS} = 10$	Test Conditions IA, $V_{GS} = 0V$ IA, Referenced to $0V, V_{GS} = 0V$ $0V, T_C = 150^{\circ}C$ $0V, V_{DS} = 0V$ $0V, V_{DS} = 0V$ $0V, I_D = 92A$ $V, I_D = 92A$ $V, V_{GS} = 0V$ $0V, V_{GS} = 0V$	9 25°C	150 - - - 2.0 -	- 0.09 - - 9.25 118 3390 334 14 583	- - 1 500 ±100 4.0 11.0 - 4510 445 - -	V V/ ^o C μA nA MΩ S PF pF pF
bltage Temperatu Itage Drain Curre Leakage Curren Id Voltage Source On Res sconductance CS ance itance sfer Capacitance d Output Capacit arge at 10V e Gate Charge Threshold to Plat "Miller" Charge	ent it sistance e tance	$V_{DS} = 12$ $V_{DS} = 12$ $V_{GS} = 10$ $V_{DS} = 10$ $V_{DS} = 75$ $f = 1MHz$ $V_{DS} = 75$ $V_{DS} = 75$ $f = 10$	iA, Referenced to $0V, V_{GS} = 0V$ $0V, T_{C} = 150^{\circ}C$ $0V, V_{DS} = 0V$ $0V, V_{DS} = 0V$ $0V, I_{D} = 92A$ $V, I_{D} = 92A$ $V, V_{GS} = 0V$ $V, V_{GS} = 0V$		- - - 2.0 -	- - 9.25 118 3390 334 14 583	- 1 500 ±100 4.0 11.0 - 4510 445 - -	V/°C μA nA W mΩ S PF pF pF
bltage Temperatu Itage Drain Curre Leakage Curren Id Voltage Source On Res sconductance CS ance itance sfer Capacitance d Output Capacit arge at 10V e Gate Charge Threshold to Plat "Miller" Charge	ent it sistance e tance	$V_{DS} = 12$ $V_{DS} = 12$ $V_{GS} = 10$ $V_{DS} = 10$ $V_{DS} = 75$ $f = 1MHz$ $V_{DS} = 75$ $V_{DS} = 75$ $f = 10$	iA, Referenced to $0V, V_{GS} = 0V$ $0V, T_{C} = 150^{\circ}C$ $0V, V_{DS} = 0V$ $0V, V_{DS} = 0V$ $0V, I_{D} = 92A$ $V, I_{D} = 92A$ $V, V_{GS} = 0V$ $V, V_{GS} = 0V$		- - - 2.0 -	- - 9.25 118 3390 334 14 583	- 1 500 ±100 4.0 11.0 - 4510 445 - -	V/°C μA nA W mΩ S PF pF pF
bltage Temperatu Itage Drain Curre Leakage Curren Id Voltage Source On Res sconductance CS ance itance sfer Capacitance d Output Capacit arge at 10V e Gate Charge Threshold to Plat "Miller" Charge	ent it sistance e tance	$V_{DS} = 12$ $V_{DS} = 12$ $V_{GS} = 10$ $V_{DS} = 10$ $V_{DS} = 75$ $f = 1MHz$ $V_{DS} = 75$ $V_{DS} = 75$ $f = 10$	iA, Referenced to $0V, V_{GS} = 0V$ $0V, T_{C} = 150^{\circ}C$ $0V, V_{DS} = 0V$ $0V, V_{DS} = 0V$ $0V, I_{D} = 92A$ $V, I_{D} = 92A$ $V, V_{GS} = 0V$ $V, V_{GS} = 0V$		- - - 2.0 -	- - 9.25 118 3390 334 14 583	500 ±100 4.0 11.0 - 4510 445 - -	μA nA V mΩ S PF pF pF
Leakage Curren Id Voltage Source On Res sconductance CS ance itance sfer Capacitance d Output Capacit arge at 10V re Gate Charge Threshold to Plat "Miller" Charge	sistance	$V_{DS} = 12 \\ V_{GS} = \pm 2 \\ V_{GS} = V_{D} \\ V_{GS} = 10 \\ V_{DS} = 10 \\ V_{DS} = 75 \\ f = 1MHz \\ V_{DS} = 75 \\ V_{GS} = 10 \\ V_{GS} = 10 \\ V_{GS} = 10 \\ V_{SS} = 10 \\$	$\begin{array}{l} 0V, \ T_{C} = 150^{\circ}C \\ 0V, \ V_{DS} = 0V \\ 0S, \ I_{D} = 250\mu A \\ 0V, \ I_{D} = 92A \\ V, \ I_{D} = 92A \\ 0V, \ V_{GS} = 0V \\ 0V, \ V_{GS} = 0V \\ 0V, \ V_{GS} = 0V \end{array}$	(Note 4)	-	9.25 118 3390 334 14 583	500 ±100 4.0 11.0 - 4510 445 - -	nA V mΩ S PF pF pF
Id Voltage Source On Res sconductance CS ance itance sfer Capacitance d Output Capacit arge at 10V e Gate Charge Threshold to Plat "Miller" Charge	sistance e tance	$V_{GS} = \pm 2$ $V_{GS} = V_{D}$ $V_{GS} = 10$ $V_{DS} = 10$ $V_{DS} = 75$ f = 1MHz $V_{DS} = 75$ $V_{S} = 75$	$VV, V_{DS} = 0V$ $DS, I_D = 250\mu A$ $VV, I_D = 92A$ $VV, I_D = 92A$ $VV, V_{GS} = 0V$ $SV, V_{GS} = 0V$	(Note 4)	-	9.25 118 3390 334 14 583	±100 4.0 11.0 - 4510 445 - -	V mΩ S pF pF pF
Id Voltage Source On Res sconductance CS ance itance sfer Capacitance d Output Capacit arge at 10V e Gate Charge Threshold to Plat "Miller" Charge	sistance e tance	$V_{GS} = V_{C}$ $V_{GS} = 10$ $V_{DS} = 10$ $V_{DS} = 75$ f = 1MHz $V_{DS} = 75$ $V_{DS} = 75$ $V_{S} = 10$	I_{DS} , $I_{D} = 250 \mu A$ I_{V} , $I_{D} = 92A$ I_{V} , $I_{D} = 92A$ I_{V} , $V_{GS} = 0V$ I_{SV} , $V_{GS} = 0V$	(Note 4)	-	9.25 118 3390 334 14 583	4.0 11.0 - 4510 445 - -	V mΩ S pF pF pF
o Source On Res sconductance CS ance itance sfer Capacitance d Output Capacita arge at 10V e Gate Charge Threshold to Plat "Miller" Charge	e lance	$V_{GS} = 10$ $V_{DS} = 10$ $V_{DS} = 75$ f = 1MHz $V_{DS} = 75$ $V_{OS} = 75$ $V_{GS} = 10$	$V, I_D = 92A$ $V, I_D = 92A$ $V, V_{GS} = 0V$ $V, I_D = 92A$	(Note 4)	-	9.25 118 3390 334 14 583	11.0 - 4510 445 - -	mΩ S pF pF pF
o Source On Res sconductance CS ance itance sfer Capacitance d Output Capacita arge at 10V e Gate Charge Threshold to Plat "Miller" Charge	e lance	$V_{GS} = 10$ $V_{DS} = 10$ $V_{DS} = 75$ f = 1MHz $V_{DS} = 75$ $V_{OS} = 75$ $V_{GS} = 10$	$V, I_D = 92A$ $V, I_D = 92A$ $V, V_{GS} = 0V$ $V, I_D = 92A$	(Note 4)	-	9.25 118 3390 334 14 583	11.0 - 4510 445 - -	mΩ S pF pF pF
sconductance CS ance itance sfer Capacitance d Output Capacitance d Output Capacitance arge at 10V e Gate Charge Threshold to Plat "Miller" Charge	e lance	$V_{DS} = 10$ $V_{DS} = 75$ f = 1MHz $V_{DS} = 75$ $V_{DS} = 75$ $V_{GS} = 10$	$V, I_{D} = 92A$ $V, V_{GS} = 0V$ $V, I_{D} = 92A$	(Note 4)	- - - - - - - -	118 3390 334 14 583	- 4510 445 - -	S pF pF pF pF
CS ance itance sfer Capacitance d Output Capacita arge at 10V re Gate Charge Threshold to Plat "Miller" Charge	tance	V _{DS} = 75 f = 1MHz V _{DS} = 75 V _{GS} = 10	SV, V _{GS} = 0V SV, I _D = 92A	(NOLE 4)	-	3390 334 14 583	4510 445 - -	pF pF pF pF
ance itance sfer Capacitance d Output Capacita arge at 10V re Gate Charge Threshold to Plat "Miller" Charge	tance	$f = 1 MHz$ $V_{DS} = 75$ $V_{GS} = 10$	sV, I _D = 92A	-	- - - - -	334 14 583	445 - -	pF pF pF
itance sfer Capacitance I Output Capacita arge at 10V ee Gate Charge Threshold to Plat "Miller" Charge	tance	$f = 1 MHz$ $V_{DS} = 75$ $V_{GS} = 10$	sV, I _D = 92A		- - - -	334 14 583	445 - -	pF pF pF
sfer Capacitance d Output Capacita arge at 10V e Gate Charge Threshold to Plat "Miller" Charge	tance	$f = 1 MHz$ $V_{DS} = 75$ $V_{GS} = 10$	sV, I _D = 92A		- - -	14 583	-	pF pF
l Output Capacit arge at 10V e Gate Charge Threshold to Pla "Miller" Charge	tance	V _{GS} = 10				583	- - 61	pF
arge at 10V e Gate Charge Threshold to Plat "Miller" Charge		V _{GS} = 10			-		- 61	
e Gate Charge Threshold to Pla "Miller" Charge	iteau)V, V _{DS} = 75V	-	-	47	61	nC
Threshold to Plat "Miller" Charge	iteau)V, V _{DS} = 75V					
"Miller" Charge	iteau	$I_D = 92A$				16	-	nC
					-	7.9	-	nC
				(Note 4, 5)	-	9.7	-	nC
tics								
y Time					-	25	60	ns
urn-On Rise Time			5V, I _D = 92A		-	26	62	ns
y Time		V _{GS} = 10V, R _{GEN} = 4.7Ω			-	46	102	ns
Time				(Note 4, 5)	-	14	38	ns
Equivalent Series Resistance (G-S) Drain Open, f = 1MHz			en, f = 1MHz		-	2.5	-	Ω
naracteristic	S							
Maximum Continuous Drain to Source Diode Forward Current					-	-	92	Α
		orward Current		-	-	369	Α	
e Diode Forward	d Voltage	$V_{GS} = 0V$	/, I _{SD} = 92A		-	-	1.25	V
very Time				= 75V	-	89	-	ns
very Charge		$dI_{F}/dt = 100A/\mu s$ (Note 4)		-	255	-	nC	
	me ies Resistance aracteristic inuous Drain to ed Drain to Sou e Diode Forwar very Time very Charge by maximum junction ing $T_J = 25^{\circ}C$	me ies Resistance (G-S) aracteristics inuous Drain to Source Diode ed Drain to Source Diode Fo e Diode Forward Voltage very Time very Charge by maximum junction temperature ing $T_J = 25^{\circ}C$	me Drain Op aracteristics Drain Op anacteristics inuous Drain to Source Diode Forward ed Drain to Source Diode Forward Curr Diode Forward Voltage very Time $V_{GS} = 0V$ very Charge $dI_F/dt = 1$ by maximum junction temperature ing $T_J = 25^{\circ}C$	me Drain Open, f = 1MHz aracteristics Drain Open, f = 1MHz anacteristics Drain to Source Diode Forward Current ed Drain to Source Diode Forward Current ed Drain to Source Diode Forward Current b Diode Forward Voltage $V_{GS} = 0V$, $I_{SD} = 92A$ very Time $V_{GS} = 0V$, $I_{SD} = 92A$, V_{DD} very Charge $dI_F/dt = 100A/\mu s$ avg maximum junction temperature $I_J = 25^{\circ}C$	me (Note 4, 5) ies Resistance (G-S) Drain Open, f = 1MHz aracteristics Dirain Open, f = 1MHz ainuous Drain to Source Diode Forward Current Provide Porward Current ed Drain to Source Diode Forward Current Provide Porward Voltage VGS = 0V, ISD = 92A very Time VGS = 0V, ISD = 92A, VDD = 75V Very Charge VIF (Note 4) op maximum junction temperature Important current Important current	me(Note 4, 5)-ies Resistance (G-S)Drain Open, f = 1MHz-aracteristicsinuous Drain to Source Diode Forward Current-ed Drain to Source Diode Forward Current-e Diode Forward Voltage $V_{GS} = 0V, I_{SD} = 92A$ -very Time $V_{GS} = 0V, I_{SD} = 92A, V_{DD} = 75V$ -very Charge $dI_F/dt = 100A/\mu s$ (Note 4)-	me(Note 4, 5)-14ites Resistance (G-S)Drain Open, f = 1MHz-2.5aracteristicsinuous Drain to Source Diode Forward Currented Drain to Source Diode Forward Currente Diode Forward Voltage $V_{GS} = 0V$, $I_{SD} = 92A$ -very Time $V_{GS} = 0V$, $I_{SD} = 92A$, $V_{DD} = 75V$ -ey charge $dI_F/dt = 100A/\mu s$ (Note 4)-ey maximum junction temperature	me(Note 4, 5)-1438ies Resistance (G-S)Drain Open, f = 1MHz-2.5-aracteristicsinuous Drain to Source Diode Forward Current92ed Drain to Source Diode Forward Current369e Diode Forward Voltage $V_{GS} = 0V, I_{SD} = 92A$ 1.25very Time $V_{GS} = 0V, I_{SD} = 92A, V_{DD} = 75V$ -89-very Charge $dI_F/dt = 100A/\mu s$ (Note 4)-255-





Peak Diode Recovery dv/dt Test Circuit & Waveforms

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower TM Auto-SPMT ^M AX-CAPT ^{M*} BitSiC [®] Build it Now TM CorePLUS TM CorePOWER TM COREPOWER TM CORECTION CORECTION CONTRACTION CONTRACTION DEUXPEED [®] Dual Cool TM ECOSPARK [®] EfficentMax TM ESBC TM Fairchild [®] Fairchild [®] Fairchild [®] Fairchild [®] Fairchild Semiconductor [®] FACT [®] FAST [®] FastvCore TM FETBench TM FlashWriter [®] *	FPS™ F-PFS™ FRFET® Global Power Resource SM Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroPat™ MicroPak™ MicroPak™ MicroPak™ MillerDrive™ Motion-SPM™ Motion-SPM™ Motion-SPM™ Motion-SPM™ Motion-SPM™ Motion-SPM™ Motion-SPM™ Motion-SPM™ Motion-SPM™	Power-SPM™ PowerXS™ Programmable Active Droop™ QFET® QS™ Quiet Series™ RapidConfigure™ TM Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ SMART START™ SPM® STEALTH™ SuperFET® SuperSOT™-6 SuperSOT™-6 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFETT Sync-Lock™ EGENERAL	The Power Franchise [®] The Right Technology for Your Success™ Pranchise TinyBoost™ TinyBoost™ TinyBoost™ TinyDogic [®] TINYOPTOT™ TinyPOwer™ TinyPOwer™ TinyPOwer™ TinyPOwer™ TinyPOwer™ TinyPOwer™ TinyPOwer™ TinyPOwer™ TinyPOwer™ TinyPOwer™ TinyPOwer™ TinyPower™ TunyPower TunyPower TunyPower TunyPower
--	--	--	---

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.