FDB86135

N-Channel PowerTrench ${ }^{\circledR}$ MOSFET 100V, 176A, 3.5m Ω

Features

- $\operatorname{Max} R_{D S}$ (on) $=3.5 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=75 \mathrm{~A}$
- Fast Switching Speed
- Low Gate Charge
- High Performance Trench Technology for Extremely Low $\mathrm{R}_{\mathrm{DS} \text { (on) }}$
- High Power and Current Handling Capability
- RoHS Compliant

General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

Applications

- DC-DC primary bridge
- DC-DC Synchronous rectification
- Hot swap

MOSFET Maximum Ratings $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter			Ratings	Units
$\mathrm{V}_{\text {DSS }}$	Drain to Source Voltage			100	V
$\mathrm{V}_{\text {GSS }}$	Gate to Source Voltage			± 20	V
${ }_{\text {I }}$	Drain Curren	- Continuous (Silicon Limited) $\mathrm{T}_{\mathrm{C}}=25^{\circ}$		176	
	- Continuous(Package Limited) $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ - Continuous $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}($ Note 1a)			120	A
				75	
	- Pulsed			704	A
$\mathrm{E}_{\text {AS }}$	Single Pulsed Avalanche Energy		(Note 3)	658	mJ
P_{D}	Power Dissipation	$-\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	(Note 1a)	227	W
		- $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	(Note 1b)	2.4	W/ ${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{J},}, \mathrm{T}_{\text {STG }}$	Operating and Storage Temperature Range			-55 to +175	${ }^{\circ} \mathrm{C}$

Thermal Characteristics

| Symbol | Parameter | Ratings | Units |
| :--- | :--- | :--- | :---: | :---: |
| $\mathrm{R}_{\theta \mathrm{JC}}$ | Thermal Resistance, Junction to Case | (Note 1) | 0.66 |
| $\mathrm{R}_{\theta \mathrm{JA}}$ | Thermal Resistance, Junction to Ambient | (Note 1a) | 62.5 |

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDB86135	FDB86135	D2-PAK	330 mm	24 mm	800

Electrical Characteristics $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
Off Characteristics						
BV ${ }_{\text {DSS }}$	Drain to Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	100	-	-	V
$\frac{\Delta \mathrm{BV}_{\mathrm{DSS}}}{\Delta \mathrm{~T}_{\mathrm{J}}}$	Breakdown Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$, Referenced to $25^{\circ} \mathrm{C}$	-	0.07	-	V/ ${ }^{\circ} \mathrm{C}$
IDSS	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=80 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
IGSS	Gate to Body Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	-	-	± 100	nA

On Characteristics

$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	2.0	-	4.0	V
$\mathrm{R}_{\mathrm{DS}(\text { on })}$	Static Drain to Source On Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=75 \mathrm{~A}$	-	3.0	3.5	$\mathrm{~m} \Omega$
$\mathrm{~g}_{\mathrm{FS}}$	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=75 \mathrm{~A}$	-	167	-	S

Dynamic Characteristics

$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	5485	7295	pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance		-	2430	3230	pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance		-	210	-	pF
$\mathrm{Qg}_{\text {(tot) }}$	Total Gate Charge at 10V	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=80 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=75 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \end{aligned}$	-	89	116	nC
Q_{gs}	Gate to Source Gate Charge		-	24	-	nC
$\mathrm{Q}_{\mathrm{gs} 2}$	Gate Charge Threshold to Plateau		-	8	-	nC
Qgd	Gate to Drain "Miller" Charge		-	25	-	nC

Switching Characteristics

$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	Turn-On Delay Time	$\begin{aligned} & V_{D D}=50 \mathrm{~V}, I_{D}=75 \mathrm{~A} \\ & V_{G S}=10 \mathrm{~V}, R_{G E N}=4.7 \Omega \end{aligned}$	-	22	54	ns
t_{r}	Turn-On Rise Time		-	54	118	ns
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-Off Delay Time		-	37	84	ns
t_{f}	Turn-Off Fall Time		-	11	32	ns

Drain-Source Diode Characteristics

$\mathrm{V}_{\text {SD }}$	Drain to Source Diode Forward Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{SD}}=75 \mathrm{~A} \quad$ (Note 2)		-	1.25	V
$\mathrm{t}_{\text {rr }}$	Reverse Recovery Time	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{SD}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=80 \mathrm{~V} \\ & \mathrm{dI}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	-	72	-	ns
$\mathrm{Q}_{\text {rr }}$	Reverse Recovery Charge		-	129	-	nC

NOTES:

1. $R_{\theta J A}$ is determined with the device mounted on a 1 in 2 pad 2 oz copper pad on a 1.5×1.5 in. board of FR-4 material. $R_{\theta J C}$ is guaranteed by design while $R_{\theta C A}$ is determined by the user's board design

a) $40^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 \mathrm{in}^{2}$ pad of 2 oz copper

b) $62.5^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a minimum pad of 2 oz copper
2. Pulse Test: Pulse Width < $300 \mu \mathrm{~s}$, Duty cycle $<2.0 \%$.
3. Starting $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{L}=1 \mathrm{mH}, \mathrm{I}_{\mathrm{AS}}=36.3 \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=100 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$.

Typical Performance Characteristics

Figure 1. On-Region Characteristics

Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

Figure 5. Capacitance Characteristics

Figure 2. Transfer Characteristics

Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

Figure 6. Gate Charge Characteristics

Typical Performance Characteristics

Figure 7. Breakdown Voltage Variation vs. Temperature

Figure 9. Maximum Safe Operating Area

Figure 8. On-Resistance Variation vs. Temperature

Figure 10. Maximum Drain Current
vs. Case Temperature

Figure 11. Unclamped Inductive Switching Capability

Typical Performance Characteristics

Figure 12. Transient Thermal Response Curve

Mechanical Dimensions

=AIRCHILD

SEMICONDபСTロR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower ${ }^{\text {TM }}$	FPS ${ }^{\text {™ }}$	Power-SPM ${ }^{\text {TM }}$	The Power Franchis
Auto-SPM ${ }^{\text {™ }}$	F-PFS ${ }^{\text {TM }}$	PowerTrench ${ }^{\text {® }}$	The Right Technology
AX-CAP ${ }^{\text {TM* }}$	FRFET ${ }^{\text {® }}$	PowerXS ${ }^{\text {TM }}$	the ${ }^{\text {a }}$
BitSic ${ }^{\text {® }}$	Global Power Resource ${ }^{\text {SM }}$	Programmable Act	p wer
Build it $\mathrm{Now}^{\text {M }}$	Green FPS ${ }^{\text {™ }}$	QFET ${ }^{\text {® }}$	franchise
CorePLUS ${ }^{\text {™ }}$	Green FPS ${ }^{\text {™ }} \mathrm{e}^{\text {-Series }}{ }^{\text {™ }}$	QS $^{\text {™ }}$	TinyBoost ${ }^{\text {TM }}$
CorePOWER ${ }^{\text {™ }}$	Gmax ${ }^{\text {TM }}$	Quiet Series ${ }^{\text {™ }}$	TinyBuck ${ }^{\text {TM }}$
CROSSVOLT ${ }^{\text {TM }}$	GTO ${ }^{\text {TM }}$	RapidConfigure ${ }^{\text {TM }}$	TinyLogic ${ }^{\circledR}$
CTL ${ }^{\text {TM }}$	IntelliMAX ${ }^{\text {TM }}$	$)^{\text {TM }}$	TinyLogic ${ }^{-1}$
Current Transfer Logic ${ }^{\text {TM }}$	ISOPLANAR ${ }^{\text {TM }}$	-	
DEUXPEED ${ }^{\circledR}$	MegaBuck ${ }^{\text {™ }}$	Saving our world,	TinyPWM ${ }^{\text {™ }}$
Dual Cool ${ }^{\text {™ }}$	MICROCOUPLER ${ }^{\text {TM }}$	SignalWise ${ }^{\text {TM }}$	TinyWire ${ }^{\text {TM }}$
EcoSPARK ${ }^{\circledR}$	MicroFET ${ }^{\text {TM }}$	SmartMax ${ }^{\text {TM }}$	$\begin{aligned} & \text { TinyWire }{ }^{\text {MM }} \\ & \text { TranSic } \end{aligned}$
EfficentMax ${ }^{\text {™ }}$	MicroPak ${ }^{\text {TM }}$	SMART START ${ }^{\text {TM }}$	TriFault Detect ${ }^{\text {TM }}$
ESBC ${ }^{\text {™ }}$	MicroPak2 ${ }^{\text {TM }}$	SPM ${ }^{\text {® }}$	
5^{\circledR}	MillerDrive ${ }^{\text {TM }}$	STEALTH ${ }^{\text {TM }}$	μ SerDes ${ }^{\text {TM }}$
5	MotionMax ${ }^{\text {™ }}$	SuperFET ${ }^{\circledR}$)
Fairchild ${ }^{\text {® }}$	Motion-SPM ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-3	\checkmark
Fairchild Semiconductor ${ }^{\circledR}$	mWSaver ${ }^{\text {™ }}$	SuperSOT ${ }^{\text {TM }}$-6	$\mathrm{SerDes}^{\text {® }}$
FACT Quiet Series ${ }^{\text {™ }}$	OptiHiT ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-8	UHC ${ }^{\text {® }}$
FACT ${ }^{\text {® }}$	OPTOLOGIC ${ }^{\circledR}$	SupreMOS ${ }^{\circledR}$	Ultra FRFET ${ }^{\text {TM }}$
FAST ${ }^{\text {® }}$	OPTOPLANAR ${ }^{\circledR}$	SyncFET ${ }^{\text {TM }}$	UniFET ${ }^{\text {TM }}$
FastvCore ${ }^{\text {TM }}$		Sync-Lock ${ }^{\text {TM }}$	VCX ${ }^{\text {TM }}$ TM
FETBench ${ }^{\text {™ }}$		- SYSTEM ${ }^{\text {® }}$	VisualMax ${ }^{\text {¹ }}$
FlashWriter ${ }^{\text {® * }}$	PDP SPM ${ }^{\text {™ }}$	5GENERAL	XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

