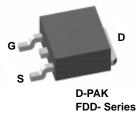
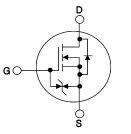


FDD10N20LZ N-Channel MOSFET 200V Logic, 7.6A, 0.36Ω

Features

- $R_{DS(on)} = 0.30\Omega$ (Typ.) @ $V_{GS} = 10V$, $I_D = 3.8A$
- Low Gate Charge (Typ.12nC)
- Low C_{rss} (Typ.11pF)
- Fast Switching
- 100% Avalanche Tested
- Improved dv/dt Capability
- RoHS Compliant


Description


These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

December 2010

UniFET [™]

This advance technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficient switching mode power supplies and active power factor correction.

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted*

Symbol	Parameter			FDD10N20LZ	Units	
V _{DSS}	Drain to Source Voltage			200	V	
V _{GSS}	Gate to Source Voltage			±20	V	
I _D	Drain Current	-Continuous (T _C = 25 ^o C)		7.6	Δ.	
	Drain Current	-Continuous ($T_C = 100^{\circ}C$)		4.5	— A	
l _{DM}	Drain Current	- Pulsed	(Note 1)	30	А	
E _{AS}	Single Pulsed Avalanche Energy		(Note 2)	121	mJ	
I _{AR}	Avalanche Current		(Note 1)	7.6	Α	
E _{AR}	Repetitive Avalanche Energy		(Note 1)	8.3	mJ	
dv/dt	Peak Diode Recovery dv/dt		(Note 3)	10	V/ns	
P _D	Power Dissipation	$(T_{\rm C} = 25^{\rm o}{\rm C})$		56	W	
		- Derate above 25°C		0.45	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
Τ _L	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			300	°C	

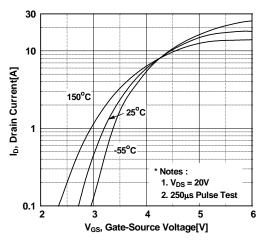
Thermal Characteristics

Symbol	Parameter	Тур	Max	Units	
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	-	2.2	°C/W	
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient	-	110	°C/VV	

FDD10N20LZ haracteristics T _C = Parameter istics ain to Source Breakdown V eakdown Voltage Temperat befficient ero Gate Voltage Drain Curre ate to Body Leakage Currer stics ate Threshold Voltage atic Drain to Source On Resonward Transconductance	/oltage ture rent nt	$I_D = 250$ $I_D = 250$ $I_D = 250$ $V_{DS} = 1$ $V_{GS} = \pm$ $V_{GS} = 1$	Test Conditions $D\mu A, V_{GS} = 0V, T_C$ $D\mu A, Referenced to 00V, V_{GS} = 0V60V, T_C = 125^{\circ}C16V, V_{DS} = 0VV_{DS}, I_D = 250\mu A0V, I_D = 3.8A$	= 25°C	6mm Min. 200 - - - - 1.0	- 0.2 - - -	2500 Max. - 1 10 ±10 2.5	Units V V/°C μΑ μΑ V
Parameter istics ain to Source Breakdown V eakdown Voltage Temperat pefficient ero Gate Voltage Drain Curr ate to Body Leakage Currer istics ate Threshold Voltage atic Drain to Source On Res	/oltage ture rent nt	$I_{D} = 250$ $I_{D} = 250$ $V_{DS} = 250$ $V_{DS} = 10$ $V_{GS} = \pm$ $V_{GS} = 10$ $V_{GS} = 10$	Test Conditions $D\mu A, V_{GS} = 0V, T_C$ $D\mu A, Referenced to 00V, V_{GS} = 0V60V, T_C = 125^{\circ}C16V, V_{DS} = 0VV_{DS}, I_D = 250\mu A0V, I_D = 3.8A$	= 25°C	200 - - - - 1.0	- 0.2 - - -	- - 1 10 ±10	V V/°C - μΑ μΑ
Parameter istics ain to Source Breakdown V eakdown Voltage Temperat pefficient ero Gate Voltage Drain Curr ate to Body Leakage Currer istics ate Threshold Voltage atic Drain to Source On Res	/oltage ture rent nt	$I_{D} = 250$ $I_{D} = 250$ $V_{DS} = 250$ $V_{DS} = 10$ $V_{GS} = \pm$ $V_{GS} = 10$ $V_{GS} = 10$	Test Conditions $D\mu A, V_{GS} = 0V, T_C$ $D\mu A, Referenced to 00V, V_{GS} = 0V60V, T_C = 125^{\circ}C16V, V_{DS} = 0VV_{DS}, I_D = 250\mu A0V, I_D = 3.8A$	= 25°C	200 - - - - 1.0	- 0.2 - - -	- - 1 10 ±10	V V/°C μΑ μΑ
ain to Source Breakdown V eakdown Voltage Temperat pefficient ero Gate Voltage Drain Curr ate to Body Leakage Curren stics ate Threshold Voltage atic Drain to Source On Res	rent nt	$I_{D} = 250$ $V_{DS} = 2$ $V_{DS} = 10$ $V_{GS} = \pm$ $V_{GS} = V$ $V_{GS} = 10$	$(D_{\mu}A, Referenced to00V, VGS = 0V60V, TC = 125oC16V, VDS = 0V(D_{DS}, I_{D} = 250 \mu A)0V, ID = 3.8A$		- - - 1.0	- 0.2 - - -	- 1 10 ±10	V/°C - μΑ μΑ
ain to Source Breakdown V eakdown Voltage Temperat pefficient ero Gate Voltage Drain Curr ate to Body Leakage Curren stics ate Threshold Voltage atic Drain to Source On Res	rent nt	$I_{D} = 250$ $V_{DS} = 2$ $V_{DS} = 10$ $V_{GS} = \pm$ $V_{GS} = V$ $V_{GS} = 10$	$(D_{\mu}A, Referenced to00V, VGS = 0V60V, TC = 125oC16V, VDS = 0V(D_{DS}, I_{D} = 250 \mu A)0V, ID = 3.8A$		- - - 1.0	-	- 1 10 ±10	V/°C - μΑ μΑ
eakdown Voltage Temperat befficient ero Gate Voltage Drain Curr ate to Body Leakage Currer stics ate Threshold Voltage atic Drain to Source On Res	rent nt	$I_{D} = 250$ $V_{DS} = 2$ $V_{DS} = 10$ $V_{GS} = \pm$ $V_{GS} = V$ $V_{GS} = 10$	$(D_{\mu}A, Referenced to00V, VGS = 0V60V, TC = 125oC16V, VDS = 0V(D_{DS}, I_{D} = 250 \mu A)0V, ID = 3.8A$		- - - 1.0	-	10 ±10	μA μA
befficient ero Gate Voltage Drain Curr ate to Body Leakage Currer stics ate Threshold Voltage atic Drain to Source On Res	rent nt	$V_{DS} = 2$ $V_{DS} = 1$ $V_{GS} = \pm$ $V_{GS} = \sqrt{2}$ $V_{GS} = 1$	$00V, V_{GS} = 0V$ $60V, T_{C} = 125^{\circ}C$ $16V, V_{DS} = 0V$ $V_{DS}, I_{D} = 250\mu A$ $0V, I_{D} = 3.8A$) 25°C	- 1.0	-	10 ±10	μΑ μΑ
ate to Body Leakage Currer stics ate Threshold Voltage atic Drain to Source On Res	nt	$V_{DS} = 1$ $V_{GS} = \pm$ $V_{GS} = V$ $V_{GS} = 1$	$60V, T_{C} = 125^{\circ}C$ $16V, V_{DS} = 0V$ $V_{DS}, I_{D} = 250\mu A$ $0V, I_{D} = 3.8A$		- 1.0	-	10 ±10	μΑ
ate to Body Leakage Currer stics ate Threshold Voltage atic Drain to Source On Res	nt	$V_{GS} = \pm$ $V_{GS} = V$ $V_{GS} = 1$	$V_{DS}, I_D = 250 \mu A$ $V_D, I_D = 3.8 A$		-	-	±10	μΑ
stics ate Threshold Voltage atic Drain to Source On Res		V _{GS} = V V _{GS} = 1	/ _{DS} , I _D = 250μA 0V, I _D = 3.8A			-		
ate Threshold Voltage atic Drain to Source On Res	sistance	V _{GS} = 1	0V, I _D = 3.8A				2.5	V
atic Drain to Source On Rea	sistance	V _{GS} = 1	0V, I _D = 3.8A				2.5	V
	sistance	V _{GS} = 1	0V, I _D = 3.8A		_			
	sistance				-	0.30	0.36	
orward Transconductance		$V_{GS} = 5V, I_D = 3.8A$		-	0.32	0.38	Ω	
Forward Transconductance		$V_{DS} = 2$	20V, I _D = 3.8A	(Note 4)	-	8	-	S
racteristics								
					-	440	585	pF
utput Capacitance				-	75	100	pF	
everse Transfer Capacitance	e		12		-	11	17	pF
tal Gate Charge at 10V					-	12	16	nC
ate to Source Gate Charge			$V_{DS} = 100 V I_{D} = 7.6 A$		-	2	-	nC
ate to Drain "Miller" Charge				(Note 4, 5)	-	3.5	-	nC
aractoristics				(
		$V_{DD} = 100V, I_D = 7.6A$ $R_G = 25\Omega$ (Note 4.5)			-	10	30	ns
					-	-		ns
					-			ns
				(Note 4 5)	-			ns
				(1010-1,0)				
		de Forward	1 Current		_		76	Α
						-	A	
								V
	u voliaye							-
,				(Nata 4)	-		-	ns uC
	but Capacitance utput Capacitance everse Transfer Capacitance tal Gate Charge at 10V ate to Source Gate Charge ate to Drain "Miller" Charge aracteristics rn-On Delay Time rn-On Rise Time rn-Off Delay Time rn-Off Fall Time Diode Characteristic aximum Continuous Drain to aximum Pulsed Drain to So	but Capacitance utput Capacitance averse Transfer Capacitance tal Gate Charge at 10V ate to Source Gate Charge ate to Drain "Miller" Charge aracteristics rn-On Delay Time rn-On Rise Time rn-Off Delay Time rn-Off Fall Time Diode Characteristics aximum Continuous Drain to Source Diode F ain to Source Diode Forward Voltage averse Recovery Time	but Capacitance $V_{DS} = 2$ attput Capacitance $f = 1MH$ averse Transfer Capacitance $f = 1MH$ averse Transfer Capacitance $V_{DS} = 1$ tal Gate Charge at 10V $V_{DS} = 1$ ate to Source Gate Charge $V_{GS} = 1$ ate to Drain "Miller" Charge $V_{DS} = 1$ aracteristics $V_{DD} = 1$ rn-On Delay Time $V_{DD} = 1$ rn-Off Delay Time $R_G = 25$ rn-Off Fall Time Diode Characteristics aximum Continuous Drain to Source Diode Forward Curation to Source Diode	but Capacitance $V_{DS} = 25V, V_{GS} = 0V$ atput Capacitance $f = 1MHz$ averse Transfer Capacitance $f = 1MHz$ tal Gate Charge at 10V $V_{DS} = 100V I_D = 7.6A$ ate to Source Gate Charge $V_{GS} = 10V$ ate to Drain "Miller" Charge $V_{DD} = 100V, I_D = 7.6A$ aracteristics $V_{DD} = 100V, I_D = 7.6A$ rn-On Delay Time $V_{DD} = 100V, I_D = 7.6A$ rn-Off Delay Time $R_G = 25\Omega$ rn-Off Fall Time $P_{DD} = 100V, I_D = 7.6A$ aximum Continuous Drain to Source Diode Forward Currentaximum Pulsed Drain to Source Diode Forward Currentain to Source Diode Forward Voltage $V_{GS} = 0V, I_{SD} = 7.6A$ verse Recovery Time $V_{GS} = 0V, I_{SD} = 7.6A$	but Capacitance $V_{DS} = 25V, V_{GS} = 0V$ f = 1MHzate to CapacitanceIMHzate to Source Gate Charge $V_{DS} = 100V I_D = 7.6A$ $V_{GS} = 10V$ ate to Drain "Miller" Charge $V_{DS} = 100V I_D = 7.6A$ $V_{GS} = 10V$ aracteristicsImage: Note 4, 5)aracteristicsImage: Note 4, 5)biode CharacteristicsImage: Note 4, 5)aximum Continuous Drain to Source Diode Forward Current aximum Pulsed Drain to Source Diode Forward Current ain to Source Diode Forward VoltageVGS = 0V, ISD = 7.6A VGS = 0V, ISD = 7.6AImage: Note 4, 5)	but Capacitance $V_{DS} = 25V, V_{GS} = 0V$ f = 1MHz-ate to Capacitancetal Gate Charge at 10V ate to Source Gate ChargeV_{DS} = 100V I_D = 7.6A V_{GS} = 10V-ate to Drain "Miller" ChargeV_{DS} = 100V I_D = 7.6A V_{GS} = 10V-aracteristicsrn-On Delay Time rn-Off Delay Time rn-Off Fall Timern-Off Fall TimeV_{DD} = 100V, I_D = 7.6A N_G = 25\Omega-Diode Characteristicsaximum Continuous Drain to Source Diode Forward Current aximum Pulsed Drain to Source Diode Forward Current ain to Source Diode Forward Voltage-V_{GS} = 0V, I_{SD} = 7.6Aeverse Recovery TimeV_{GS} = 0V, I_{SD} = 7.6A-everse Recovery TimeV_{GS} = 0V, I_{SD} = 7.6A-	but Capacitance $V_{DS} = 25V, V_{GS} = 0V$ f = 1MHz-440utput Capacitancef = 1MHz-75everse Transfer Capacitance-11tal Gate Charge at 10V ate to Source Gate Charge $V_{DS} = 100V I_D = 7.6A$ $V_{GS} = 10V$ -12ate to Drain "Miller" Charge $V_{DS} = 100V I_D = 7.6A$ $V_{GS} = 10V$ -2ate to Drain "Miller" Charge $V_{DD} = 100V, I_D = 7.6A$ $V_{GS} = 25\Omega$ -10aracteristics-10rn-On Delay Time rn-On Rise TimeV_{DD} = 100V, I_D = 7.6A $R_G = 25\Omega$ -15 Diode Characteristics -25Diode Characteristics-25aximum Continuous Drain to Source Diode Forward Current aximum Pulsed Drain to Source Diode Forward Currentaximum Pulsed Drain to Source Diode Forward Current an to Source Diode Forward VoltageV_{GS} = 0V, I_{SD} = 7.6Aeverse Recovery Time $V_{GS} = 0V, I_{SD} = 7.6A$ -115	but Capacitance $V_{DS} = 25V, V_{GS} = 0V$ -440585atput Capacitancef = 1MHz-75100everse Transfer Capacitance-1117tal Gate Charge at 10VVDS = 100V ID = 7.6A-1216ate to Source Gate ChargeVDS = 100V ID = 7.6A-2-ate to Drain "Miller" ChargeVDS = 100V ID = 7.6A-3.5-aracteristicsrn-On Delay TimeVDD = 100V, ID = 7.6A-1030rn-On Rise TimeVDD = 100V, ID = 7.6A-1540rn-Off Delay TimeVDD = 100V, ID = 7.6A-55120rn-Off Fall TimeVDD = 100V, ID = 7.6A-55120moff Fall TimeVDD = 100V, ID = 7.6A55120moff Fall TimeVDD = 100V, ID = 7.6A55120moff Fall TimeVDD = 100V, ID = 7.6A30atimum Continuous Drain to Source Diode Forward Current30atin to Source Diode Forward VoltageVGS = 0V, ISD = 7.6A1.4verse Recovery TimeVGS = 0V, ISD = 7.6A-115-

Notes: 1. Repetitive Rating: Pulse width limited by maximum junction temperature

2. L = 4.2mH, I_{AS} = 7.6A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C


3. $I_{SD} \leq$ 7.6A, di/dt \leq 200A/µs, $V_{DD} \leq BV_{DSS},$ Starting T_J = 25°C

4. Pulse Test: Pulse Width $\leq 300~\mu\text{s},$ Duty cycle $\leq 2.0\%$

5. Essentially Independent of Operating Temperature Typical Characteristics

Typical Performance Characteristics Figure 1. On-Region Characteristics 20 V_{GS} = 10V 10 7V 5V 4.5V 4V Drain Current[A] 3.5V 1 å *Notes: 1. 250µs Pulse Test 2. $T_{C} = 25^{\circ}C$ 0.1 1 10 0.1 V_{DS}, Drain-Source Voltage[V] Figure 3. On-Resistance Variation vs. **Drain Current and Gate Voltage** 1.0 Drain-Source On-Resistance 70 80 80 80 V_{GS} = 10V R_{DS(on)} [Ω], V_{GS} = 20V Note : T_J = 25°C 0.2 10 15 0 5 20 25 I_D, Drain Current [A] **Figure 5. Capacitance Characteristics** 1000 Ciss 100 Capacitances [pF] Coss Note: Crss 1. V_{GS} = 0V 10 2. f = 1MHz Ciss = Cgs + Cgd (Cds = shorted) $C_{OSS} = C_{dS} + C_{gd}$ Crss = Cgd 1 ^[] 0.1 10 30 1 V_{DS}, Drain-Source Voltage [V]

Figure 2. Transfer Characteristics

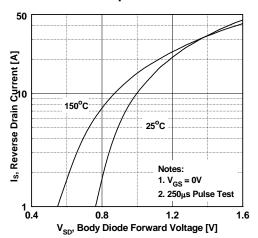
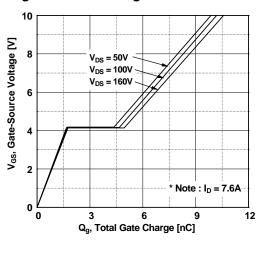
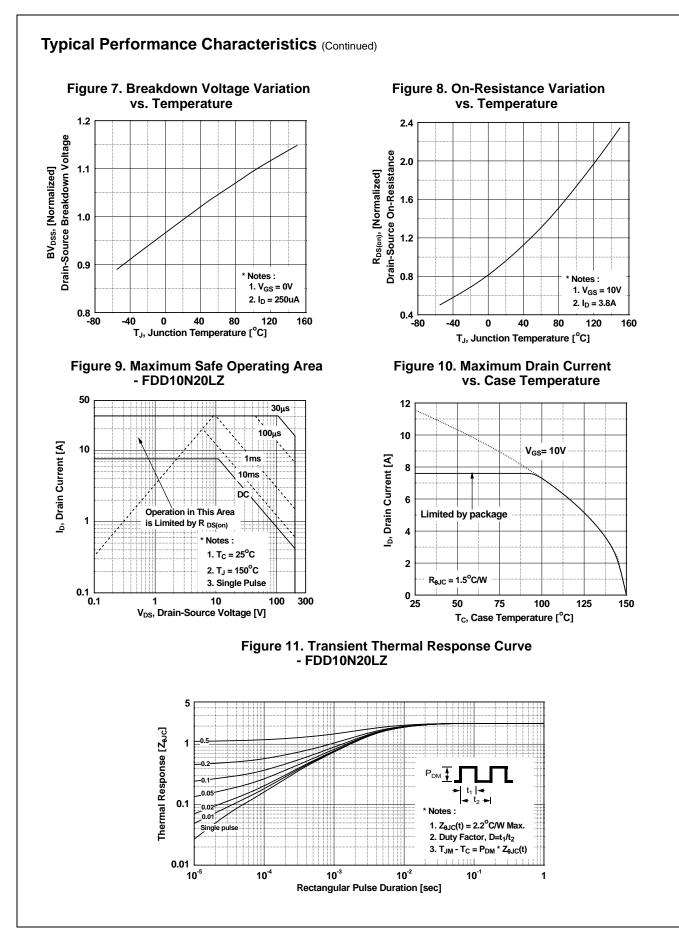
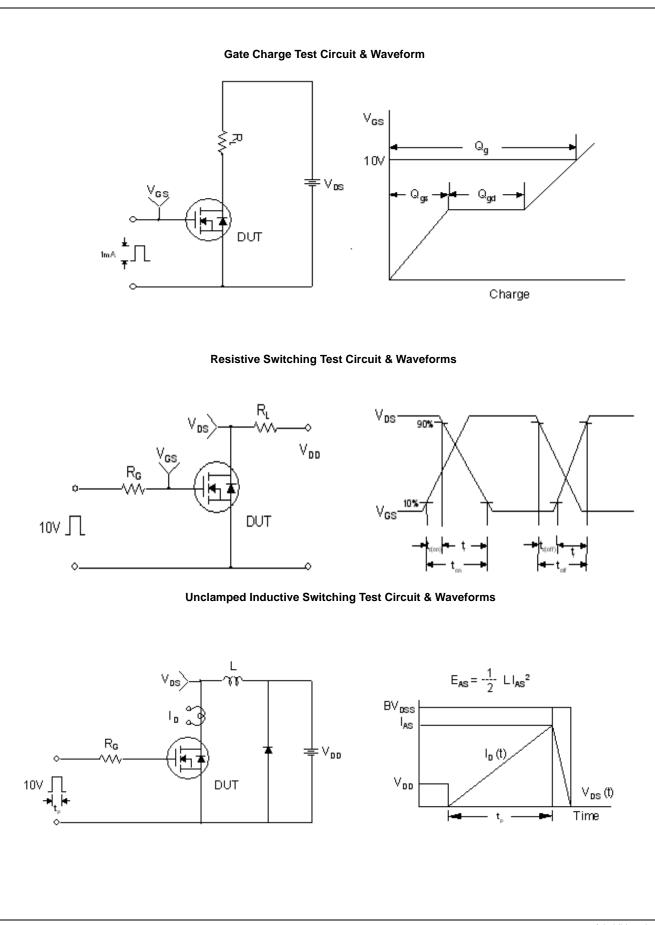
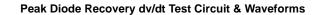
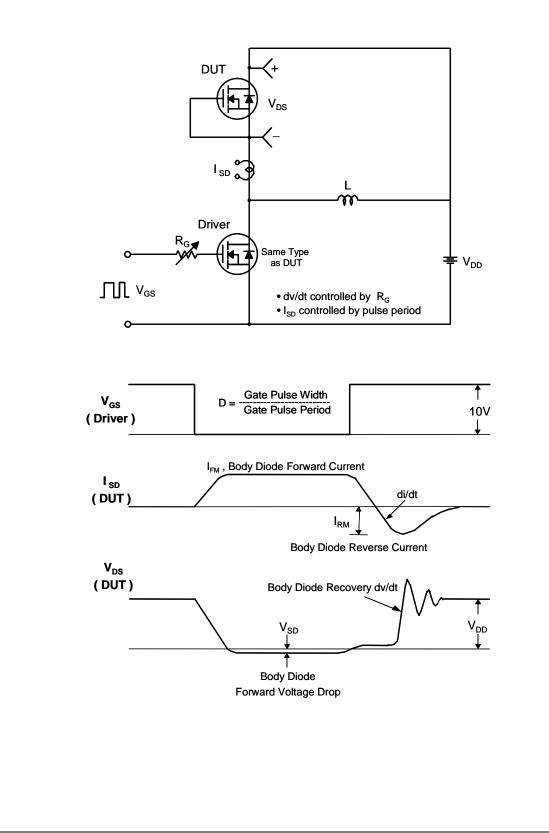
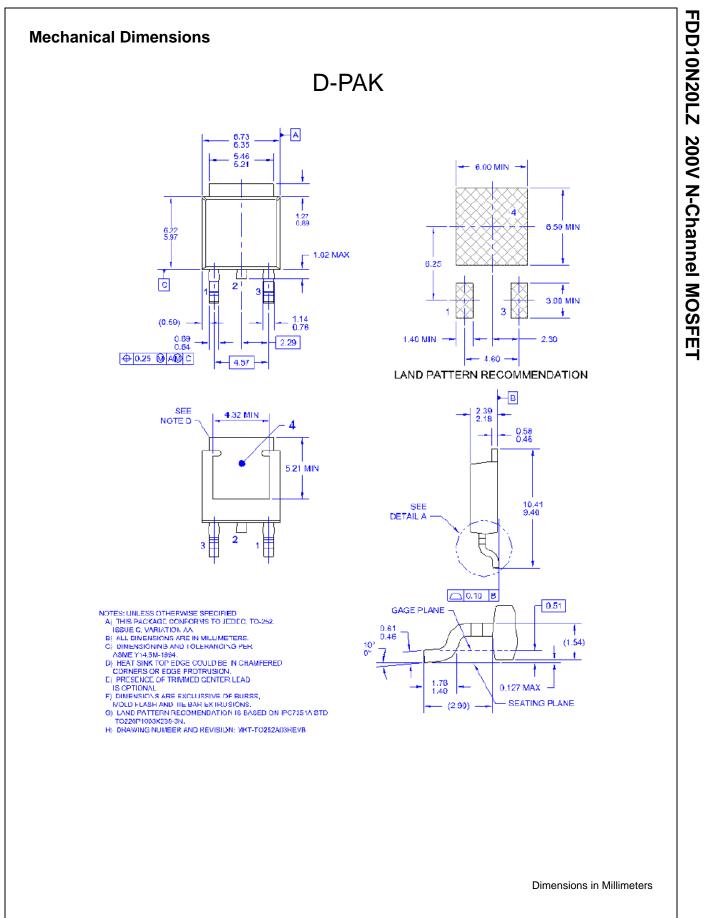





Figure 6. Gate Charge Characteristics






FDD10N20LZ 200V N-Channel MOSFET

FDD10N20LZ 200V N-Channel MOSFET

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not be an exhaustive list of all such trademarks

intended to be an exhaustive list of all AccuPower™	F-PFS™	Power-SPM™	
Auto-SPM™	FRFET®	PowerTrench®	
Build it Now™	Global Power Resource SM	PowerXS™	The Power Franchise [®]
CorePLUS™	Green FPS™	Programmable Active Droop™	
CorePOWER™	Green FPS [™] e-Series [™]	QFET®	p ^w ower [®]
CROSSVOLT™	G <i>max</i> ™	QS™	franchise TinyBoost™
CTL™	GTO™	Quiet Series [™]	TinyBuck™
Current Transfer Logic™	IntelliMAX™	RapidConfigure™	TinyCalc™
DEUXPEED®	ISOPLANAR™		TinyLogic®
Dual Cool™	MegaBuck™		TINYOPTO™
EcoSPARK®	MICROCOUPLER™	Saving our world, 1mW/W/kW at a time™	TinyPower™
EfficentMax™	MicroFET™	SignalWise™	TinyPWM™
ESBC™	MicroPak™ MicroPak2™	SmartMax [™]	TinyWire™
R	MicroPak2™ MillerDrive™	SMART START™ SPM [®]	TriFault Detect™
	MotionMax™	SPM STEALTH™	TRUECURRENT™*
Fairchild®	Motion-SPM™	SuperFET™	µSerDes™
Fairchild Semiconductor®	OptiHiT™	SuperSOT™-3	W
FACT Quiet Series™ FACT [®]	OPTOLOGIC [®]	SuperSOT™-6	SerDes
FACT®	OPTOPLANAR®	SuperSOT™-8	UHC®
FAST FastvCore™	R	SupreMOS™	Ultra FRFET™
FETBench™		SyncFET™	UniFET™
FlashWriter [®] *	PDP SPM™	Sync-Lock™	VCXTM
FPS™			VisualMax™
			XS™
*Trademarks of System General Cor	poration, used under license by Fairchild	Semiconductor.	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
-		Rev. 148