

August 2012

FDD1600N10ALZD

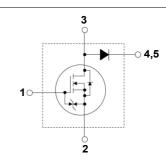
N-Channel PowerTrench[®] Boost-FET 100V, 6.8A, $160 \text{m}\Omega$

Features

- $R_{DS(on)}$ = 124m Ω (Typ.)@ V_{GS} = 10V, I_D = 3.5A
- $R_{DS(on)}$ = 175m Ω (Typ.)@ V_{GS} = 5.0V, I_D = 2.1A
- Low Gate Charge (Typ.2.78nC)
- Low C_{rss} (Typ. 2.04pF)
- · Fast Switching
- · 100% Avalanche Tested
- · Improved dv/dt Capability
- · RoHS Compliant

Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advance Power Trench process that has been expecially tailored to minimize the on-state resistance and yet maintain superior switching performance.


The NP diode is hyperfast rectifier with low forward voltage drop and excellent switching performance for boost block.

Application

- · LED Monitor Backlight
- · LED TV Backlight

- 1. Gate
- 2. Source
- 3. Drain / Anode
- 4. Cathode
- 5. Cathode

Maximum Ratings $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter			Ratings	Units
V _{DSS}	Drain to Source Voltage			100	V
V_{GSS}	Gate to Source Voltage			±20	V
	Dunin Course	- Continuous (T _C = 25°C)		6.8	
I _D	Drain Current	- Continuous (T _C = 100°C)		4.3	— A
I _{DM}	Drain Current	- Pulsed	(Note 1)	27.2	А
E _{AS}	Single Pulsed Avalanche E	nergy	(Note 2)	TBD	mJ
dv/dt	Peak Diode Recovery dv/d	t	(Note 3)	6.0	V/ns
I _F	Diode Continuous Forward	Current (T _C = TBD°C)		TBD	Α
I _{FM}	Diode Maximum Forward (Current		TBD	Α
Б	Dawer Dissination	(T _C = 25°C)		14.9	W
P_{D}	Power Dissipation	- Derate above 25°C		0.12	W/°C
T _J , T _{STG}	Operating and Storage Ter	nperature Range		-55 to +150	°C
TL	Maximum Lead Temperatu 1/8" from Case for 5 Secon	Temperature for Soldering Purpose,		300	°C

Thermal Characteristics

Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction to Case for MOSFET	-	8.4	
$R_{\theta JC}$	Thermal Resistance, Junction to Case for Diode	-	TBD °C/V	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	-	87	

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
1500N10ALZD	FDD1500N10ALZD	TO252-5L	13"	12mm	2500

Electrical Characteristics of the MOSFET $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions		Тур.	Max.	Units
Off Charac	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A$, $V_{GS} = 0 V$, $T_C = 25 ^{\circ} C$	100	-	-	V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	I _D = 250μA, Referenced to 25°C	-	0.1	-	V/°C
1	Zero Gate Voltage Drain Current	V _{DS} = 80V, V _{GS} = 0V	-	-	1	^
IDSS	Zero Gate Voltage Drain Current	$V_{DS} = 80V, T_{C} = 125^{\circ}C$	-	-	500	μΑ
I _{GSS}	Gate to Body Leakage Current	$V_{GS} = \pm 20V, V_{DS} = 0V$	-	-	±10	μА

On Characteristics

V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	1.4	2.1	2.8	V
P	Static Drain to Source On Resistance	$V_{GS} = 10V, I_D = 3.5A$	-	124	160	mΩ
NDS(on)	Static Drain to Source On Resistance	$V_{GS} = 5V, I_D = 2.1A$	-	175	375	1115.2
9 _{FS}	Forward Transconductance	$V_{DS} = 10V, I_{D} = 6.8A$	-	34	-	S

Dynamic Characteristics

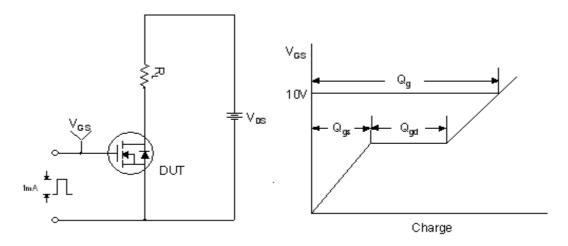
C _{iss}	Input Capacitance	\\ - F0\\\\ - 0\\	-	169	225	pF
C _{oss}	Output Capacitance	$V_{DS} = 50V, V_{GS} = 0V$ f = 1MHz	-	43	55	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1101112	-	2.04	-	pF
C _{oss(er)}	Energy Related Output Capacitance	$V_{DS} = 50V, I_D = 6.8A$		85	-	pF
Q _{g(tot)}	Total Gate Charge at 10V		-	2.78	3.61	nC
Q _{g(tot)}	Total Gate Charge at 5V	$V_{DS} = 50 V I_{D} = 6.8 A$		1.5	1.95	nC
Q_{gs}	Gate to Source Gate Charge	V _{GS} = 10V	-	0.72	-	nC
Q_{gd}	Gate to Drain "Miller" Charge	(Note 4)	-	0.56	-	nC
ESR	Equivalent Series Resistance (G-S)	f = 1MHZ, Drain shorted to Source	-	2.1	-	Ω

Switching Characteristics

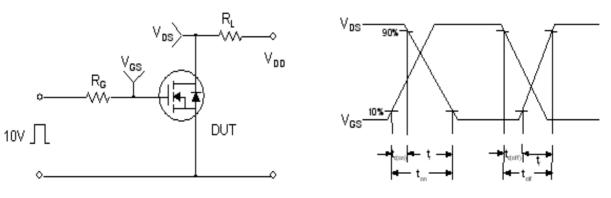
t _{d(on)}	Turn-On Delay Time		-	7	24	ns
t _r		$V_{DD} = 50V, I_{D} = 6.8A$	-	2	14	ns
$t_{d(off)}$	Turn-Off Delay Time	V_{GS} = 10V, R_{GEN} = 4.7 Ω	-	13	36	ns
t _f	Turn-Off Fall Time	(Note 4)	-	2	14	ns

Drain-Source Diode Characteristics

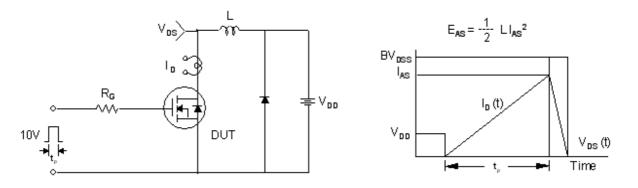
Is	Maximum Continuous Drain to Source Diode Forward Current		-	-	6.8	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		-	-	27.2	Α
V_{SD}	Drain to Source Diode Forward Voltage V _{GS} =	: 0V, I _{SD} = 6.8A	-	-	1.3	V
t _{rr}	Reverse Recovery Time V _{GS} =	: 0V, I _{SD} = 6.8A, V _{DS} = 50V	-	37	-	ns
Q_{rr}	Reverse Recovery Charge dl _F /dt	= 100A/μs	-	42	-	nC

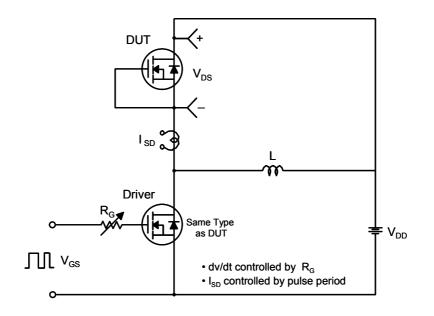

Notes:

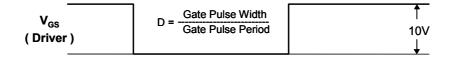
- Repetitive Rating: Pulse width limited by maximum junction temperature
- 2. L = 1mH, I_{AS} = TBDA, R_G = 25 Ω , Starting T_J = 25 $^{\circ}$ C
- 3. I $_{SD} \leq 6.8 \text{A}, \text{ di/dt} \leq 200 \text{A/}\mu\text{s}, \text{ V}_{DD} \leq \text{BV}_{DSS}, \text{ Starting T}_{J} = 25^{\circ}\text{C}$
- 4. Essentially Independent of Operating Temperature Typical Characteristics

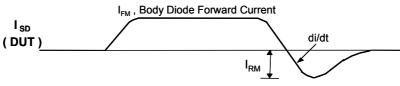

Electrical Characteristics of DIODE $T_C = 25^{\circ}C$ unless otherwise noted

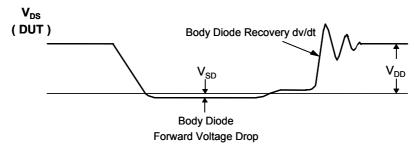
Symbol	Parameter	Test Cond	litions	Min.	Тур.	Max.	Units
V_R	DC Blocking Voltage	I _R = 250uA		120	-	-	V
I _R	Reverse Current	V _R = 96V		-	-	1	mA
I _R	Reverse Current	V _R = 120V		-	-	10	mA
I _R	Reverse Current	V _R = 160V		-	-	10	mA
	Diede Ferward Voltage	1 - 50	$T_C = 25^{\circ}C$	-	-	2.5	V
V_{FM}	Diode Forward Voltage	I _F = 5A	$T_{\rm C} = 125^{\rm o}{\rm C}$	-	TBD	-	, v
	Diada Dayarra Dagayary Tima		$T_C = 25^{\circ}C$	-	TBD	TBD	
t _{rr}	Diode Reverse Recovery Time		$T_{\rm C} = 125^{\rm o}{\rm C}$	-	TBD	-	ns
	Diada Daak Dayaraa Daaayary Current	I _F = 5A	$T_C = 25^{\circ}C$	-	TBD	TBD	^
'rr	Diode Peak Reverse Recovery Current	dI/dt = 200A/μs	$T_{\rm C} = 125^{\rm o}{\rm C}$	-	TBD	-	A
0	Diode Reverse Recovery Charge		$T_C = 25^{\circ}C$	-	TBD	TBD	nC
Q _{rr}			$T_{\rm C} = 125^{\rm o}{\rm C}$	-	TBD	-	nC


Gate Charge Test Circuit & Waveform


Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching Test Circuit & Waveforms


Peak Diode Recovery dv/dt Test Circuit & Waveforms

Body Diode Reverse Current

Mechanical Dimensions

TO252-5L

Dimensions in Millimeters

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ AccuPower™ AX-CAP™* RitSiC[®] Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLTTM

 $\mathsf{CTL}^{\mathsf{TM}}$ Current Transfer Logic™ DFUXPFFD[®] Dual Cool™

EcoSPARK® EfficentMax™ ESBC™

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ **FACT**[®] FAST®

FastvCore™ FETBench™ FlashWriter® * F-PFS™ FRFET®

Global Power ResourceSM Green Bridge™ Green FPS™

Green FPS™ e-Series™

Gmax™ GTO™ IntelliMAX™ ISOPLANAR™

Marking Small Speakers Sound Louder

and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™

MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Motion-SPM™ mWSaver™ OptoHiT™ OPTOLOGIC® OPTOPLANAR®

PowerTrench® PowerXS™

Programmable Active Droop™

OFET QSTM Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM® STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™

Sync-Lock™ SYSTEM ®* 5GENERAL

The Power Franchise®

bwer franchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic[®]
TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC® TriFault Detect™ TRUECURRENT®*

UHC® Ultra FRFET™ UniFET™

μSerDes™

VCX™ VisualMax™ VoltagePlus™ XSTM

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICYFAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their

parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairc..... will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification Product Status		Definition
Advance Information Formative / In Design		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary First Production		Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed Full Production		Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete Not In Production		Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev 161