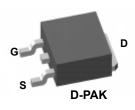
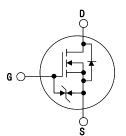


FDD8N50NZ N-Channel MOSFET 500V, 6.5A, 0.85Ω


Features


- + $R_{DS(on)} = 0.77\Omega$ (Typ.) @ $V_{GS} = 10V$, $I_D = 3.25A$
- Low Gate Charge (Typ. 14nC)
- Low C_{rss} (Typ. 5pF)
- Fast Switching
- 100% Avalanche Tested
- Improve dv/dt Capability
- ESD Improved Capability
- RoHS Compliant

Description

This N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advance technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficient switching mode power supplies and active power factor correction.

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted

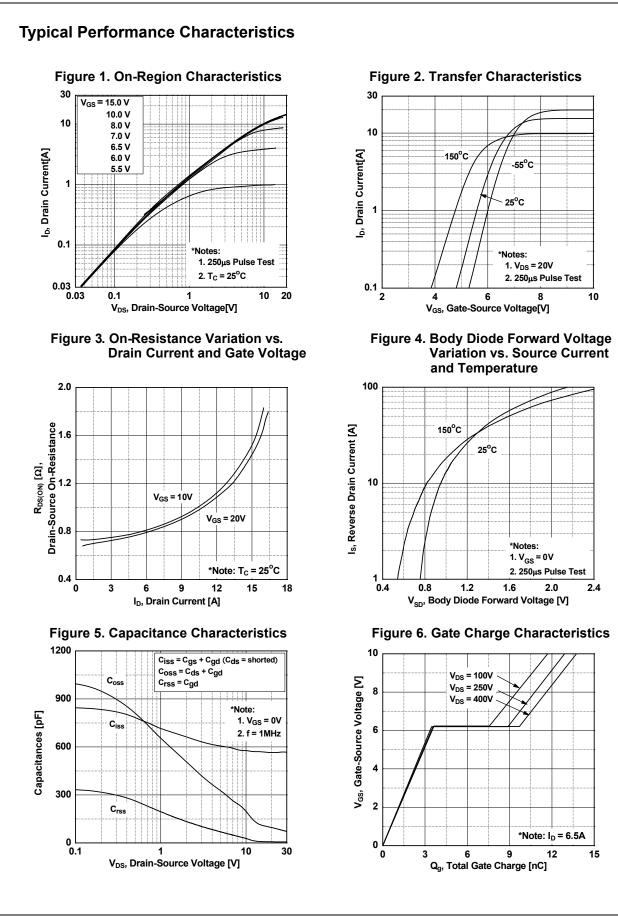
Symbol	Parameter			Ratings	Units
V _{DSS}	Drain to Source Voltage			500	V
V _{GSS}	Gate to Source Voltage			±25	V
I _D	Drain Current	-Continuous ($T_C = 25^{\circ}C$)		6.5	•
		-Continuous (T _C = 100 ^o C)		3.9	Α
I _{DM}	Drain Current	- Pulsed	(Note 1)	26	A
E _{AS}	Single Pulsed Avalanche Energy		(Note 2)	287	mJ
I _{AR}	Avalanche Current		(Note 1)	6.5	Α
E _{AR}	Repetitive Avalanche Energy		(Note 1)	9	mJ
dv/dt	Peak Diode Recovery dv/dt		(Note 3)	10	V/ns
P _D	Power Dissipation	$(T_{\rm C} = 25^{\rm o}{\rm C})$		90	W
		- Derate above 25°C		0.7	W/ºC
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C
Τ _L	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			300	°C

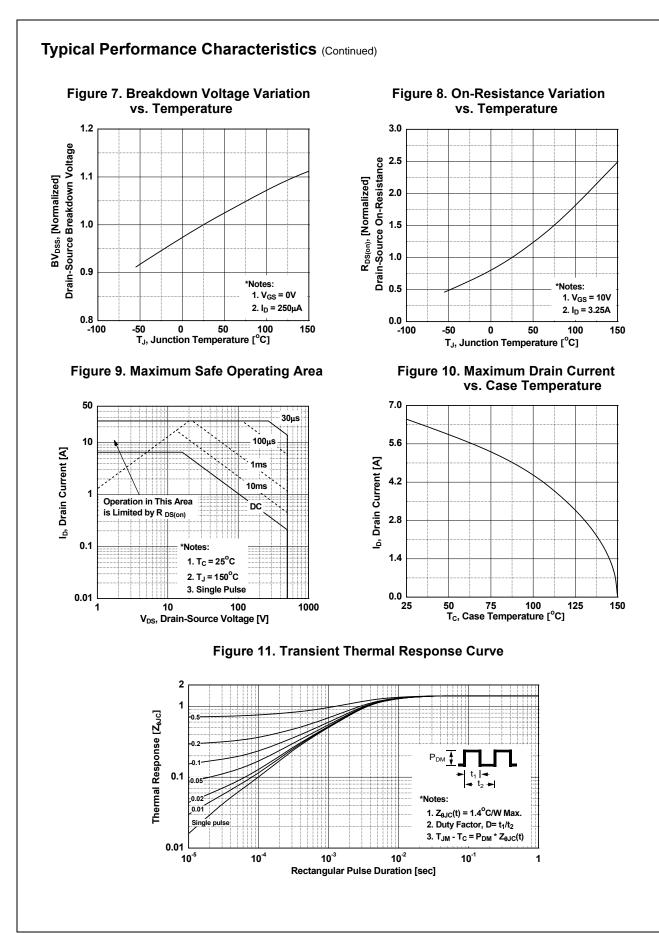
*Drain current limited by maximum junction temperatur

Thermal Characteristics

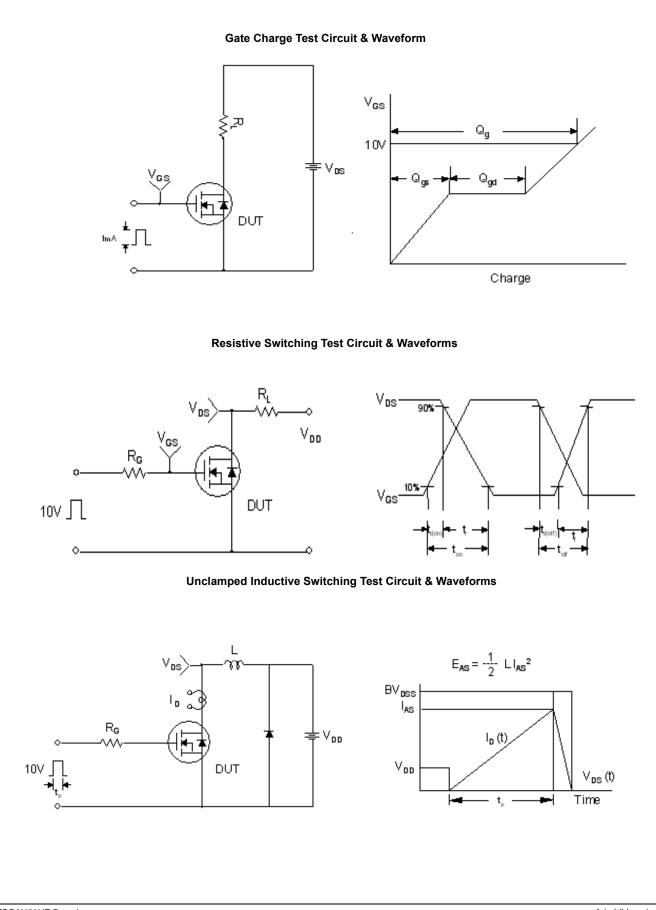
Symbol	Parameter	Ratings	Units
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	1.4	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	62.5	C/W

Device MarkingDeviceFDD8N50NZFDD8N50NZVT		Package	• ·		Width		Quantity		
		D-PAK			16mm		2500		
Electrica	l Char	acteristics T _c =2	25ºC unless o	therwise noted					
Symbol		Parameter		Test Condition	IS	Min.	Тур.	Max.	Units
Off Charac	cteristic	S				1		1	
BV _{DSS}	Drain to Source Breakdown Voltage			I _D = 250μA, V _{GS} = 0V, T ₆	$c = 25^{\circ}C$	500	-	-	V
$\frac{\Delta BV_{DSS}}{\Delta T_{,l}}$	Breakdown Voltage Temperature Coefficient		ro	$I_D = 250 \mu A$, Referenced to $25^{\circ}C$		-	0.5	-	V/ºC
	7			$V_{DS} = 500V, V_{GS} = 0V$ $V_{DS} = 400V, T_C = 125^{\circ}C$		-	-	1	μΑ
DSS Zero Gate Voltage Drain Cur		ate voltage Drain Currei	าเ			-	-	10	
I _{GSS}	Gate to	Body Leakage Current	,	$V_{GS} = \pm 25 V, V_{DS} = 0 V$		-	-	±10	μA
On Charac	cteristics	6							
V _{GS(th)}	Gate Th	reshold Voltage		V _{GS} = V _{DS} , I _D = 250μA		3.0	-	5.0	V
R _{DS(on)}		rain to Source On Resi		$V_{GS} = 10V, I_D = 3.25A$		-	0.77	0.85	Ω
9 _{FS}	Forward	d Transconductance		$V_{DS} = 20V, I_D = 3.25A$	(Note 4)	-	6.3	-	S
Dynamic C	Characte	eristics							
C _{iss}	Input Capacitance			V _{DS} = 25V, V _{GS} = 0V f = 1MHz		-	565	735	pF
C _{oss}	Output 0	tput Capacitance				-	80	105	pF
	Reverse Transfer Capacitance						5	•	-
C _{rss}	Reverse	Transfer Capacitance				-	5	8	pF
		e Transfer Capacitance ate Charge at 10V				-	5 14	8 18	pF nC
	Total Ga	1		$V_{DS} = 400V, I_D = 6.5A$	-	-	-	-	•
C _{rss} Q _{g(tot)} Q _{gs} Q _{gd}	Total Ga Gate to	ate Charge at 10V		V _{DS} = 400V,I _D = 6.5A V _{GS} = 10V	(Note 4, 5)	-	14	18	nC
Q _{g(tot)} Q _{gs} Q _{gd}	Total Ga Gate to Gate to	te Charge at 10V Source Gate Charge Drain "Miller" Charge			(Note 4, 5)		14 4	18 -	nC nC
Q _{g(tot)} Q _{gs} Q _{gd} Switching	Total Ga Gate to Gate to Charact	te Charge at 10V Source Gate Charge Drain "Miller" Charge			(Note 4, 5)		14 4	18 -	nC nC
Q _{g(tot)} Q _{gs} Q _{gd} Switching	Total Ga Gate to Gate to Charact Turn-On	te Charge at 10V Source Gate Charge Drain "Miller" Charge			(Note 4, 5)	-	14 4 6	- -	nC nC nC
$\begin{array}{c} Q_{g(tot)} \\ Q_{gs} \\ Q_{gd} \\ \hline \\ \textbf{Switching} \\ t_{d(on)} \\ t_{r} \\ \hline \\ \hline \end{array}$	Total Ga Gate to Gate to Charact Turn-On Turn-On	te Charge at 10V Source Gate Charge Drain "Miller" Charge teristics		V _{GS} = 10V	(Note 4, 5)	-	14 4 6 17	18 - - 45	nC nC nC
$\begin{array}{c} Q_{g(tot)} \\ Q_{gs} \\ Q_{gd} \\ \hline \\ \textbf{Switching} \\ t_{d(on)} \\ \end{array}$	Total Ga Gate to Gate to Charact Turn-On Turn-On Turn-Off	te Charge at 10V Source Gate Charge Drain "Miller" Charge teristics Delay Time Rise Time		V _{GS} = 10V V _{DD} = 250V, I _D = 6.5A		-	14 4 6 17 34	18 - - 45 80	nC nC nC nC
$\begin{array}{c} Q_{g(tot)} \\ Q_{gs} \\ Q_{gd} \\ \hline \\ \textbf{Switching} \\ t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ \hline \\ t_f \\ \end{array}$	Total Ga Gate to Gate to Charact Turn-On Turn-On Turn-Off Turn-Off	te Charge at 10V Source Gate Charge Drain "Miller" Charge teristics Delay Time Rise Time Delay Time Fall Time		V _{GS} = 10V V _{DD} = 250V, I _D = 6.5A	(Note 4, 5)	-	14 4 6 17 34 43	18 - - 45 80 95	nC nC nC nC nS ns
Q _{g(tot)} Q _{gs} Q _{gd} Switching t _{d(on)} t _r t _{d(off)} t _f Drain-Sou	Total Ga Gate to Gate to Turn-On Turn-Off Turn-Off Turn-Off	te Charge at 10V Source Gate Charge Drain "Miller" Charge teristics Delay Time Rise Time Delay Time Fall Time de Characteristics		V _{GS} = 10V V _{DD} = 250V, I _D = 6.5A R _G = 25Ω, V _{GS} = 10V		-	14 4 6 17 34 43	18 - - 45 80 95 60	nC nC nC nC nS ns ns
Q _{g(tot)} Q _{gs} Q _{gd} Switching t _{d(on)} t _r t _{d(off)} t _f Drain-Sou	Total Ga Gate to Gate to Charact Turn-On Turn-Off Turn-Off Turn-Off Turn-Off Turn-Off Turn-Off Turn-Off	te Charge at 10V Source Gate Charge Drain "Miller" Charge teristics Delay Time Rise Time Fall Time te Characteristics m Continuous Drain to S	Source Diode	$V_{GS} = 10V$ $V_{DD} = 250V, I_D = 6.5A$ $R_G = 25\Omega, V_{GS} = 10V$ Forward Current		-	14 4 6 17 34 43	18 - - 45 80 95 60 8	nC nC nC nC nS ns ns A
Qg(tot) Qgs Qgd Switching td(on) tr td(off) tf Drain-Sou Is IsM	Total Ga Gate to Gate to Charact Turn-On Turn-Off Turn-Off Turn-Off Turn-Off Maximur Maximur	te Charge at 10V Source Gate Charge Drain "Miller" Charge teristics Delay Time Rise Time Delay Time Fall Time de Characteristics m Continuous Drain to Sour	Source Diode ce Diode Forw	$V_{GS} = 10V$ $V_{DD} = 250V, I_D = 6.5A$ $R_G = 25\Omega, V_{GS} = 10V$ Forward Current vard Current		-	14 4 6 17 34 43 27 -	18 - - 45 80 95 60 8 30	nC nC nC nC nS ns ns
Qg(tot) Qgs Qgd Switching td(on) tr td(off) tr Drain-Soul Is	Total Ga Gate to Gate to Charact Turn-On Turn-Off Turn-Off Turn-Off Turn-Off Control Turn-Off	te Charge at 10V Source Gate Charge Drain "Miller" Charge teristics Delay Time Rise Time Fall Time te Characteristics m Continuous Drain to S	Source Diode Ce Diode Forw Voltage	$V_{GS} = 10V$ $V_{DD} = 250V, I_D = 6.5A$ $R_G = 25\Omega, V_{GS} = 10V$ Forward Current		- - - - -	14 4 6 17 34 43 27 -	18 - - 45 80 95 60 8	nC nC nC nS ns ns ns A A

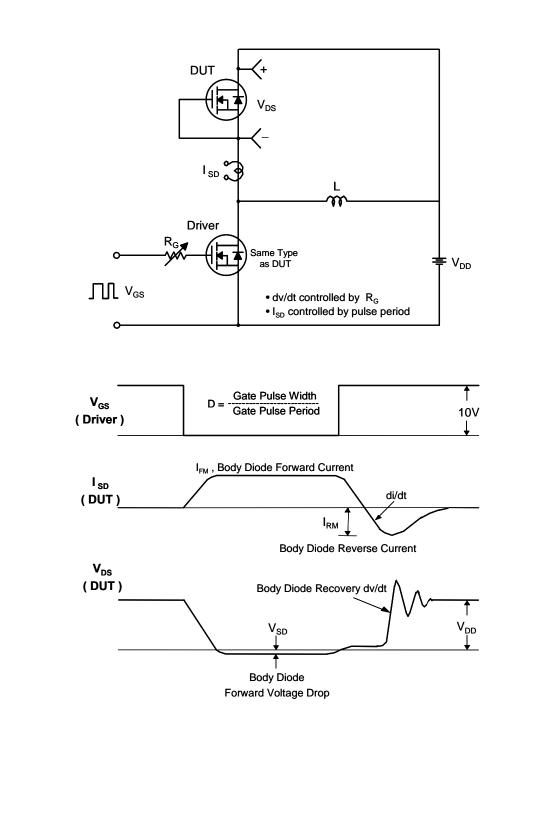

1. Repetitive Rating: Pulse width limited by maximum junction temperature

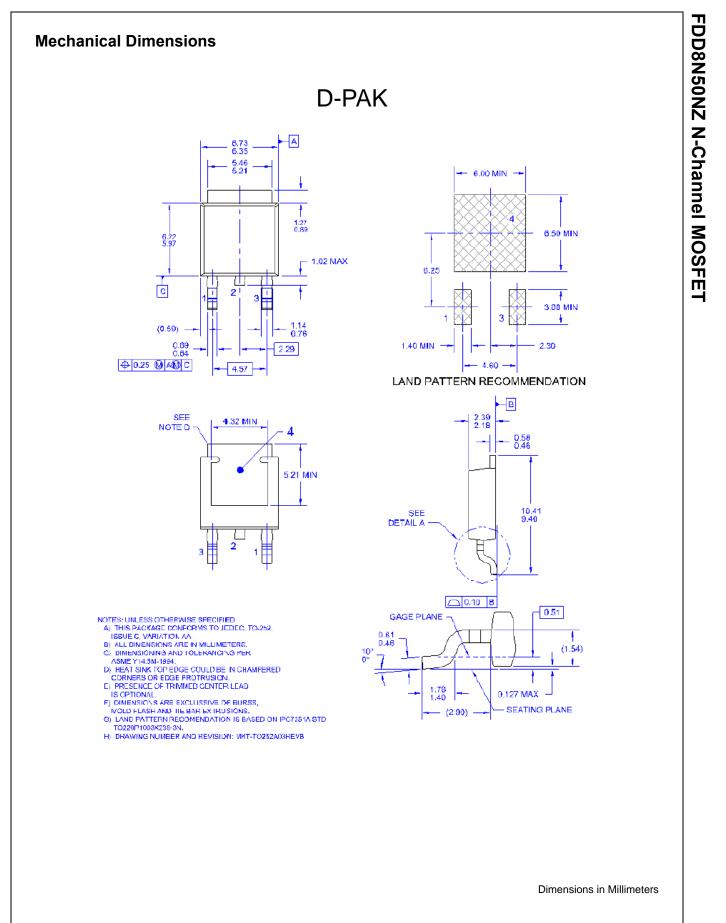

2. L = 13.6mH, I_{AS} = 6.5A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C

3. $I_{SD} \leq 6.5 A, \, di/dt \leq 200 A/\mu s, \, V_{DD} \leq B V_{DSS}, \, Starting \, T_J$ = $25^{\circ}C$


4. Pulse Test: Pulse width $\leq 300 \mu \text{s}, \, \text{Duty Cycle} \leq 2\%$

5. Essentially Independent of Operating Temperature Typical Characteristics




FDD8N50NZ N-Channel MOSFET

FDD8N50NZ N-Channel MOSFET

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not . . . the list of all available trade

AccuPower™	F-PFS™	Power-SPM [™]	SYSTEM D*
Auto-SPM™	FRFET®	PowerTrench [®]	GENERAL
Build it Now™	Global Power Resource SM	PowerXS™	GENERAL The Power Franchise [®]
CorePLUS™	Green FPS™	Programmable Active Droop [™]	the ®
CorePOWER™	Green FPS [™] e-Series [™]	QFET®	puwer
CROSSVOLT™	G <i>max</i> ™	QS™	franchise TinyBoost™
CTL™	GTO™	Quiet Series™	TinyBuck™
Current Transfer Logic™	IntelliMAX™	RapidConfigure™	TinyCalc™
DEUXPEED®	ISOPLANAR™		TinyLogic®
Dual Cool™	MegaBuck™		TINYOPTO™
EcoSPARK [®]	MICROCOUPLER™	Saving our world, 1mW/W/kW at a time™	TinyPower™
EfficentMax™	MicroFET™	SignalWise™	TinyPWM™
ESBC™	MicroPak™	SmartMax™	TinyWire™
R	MicroPak2 [™]	SMART START™	TriFault Detect™
T	MillerDrive™	SPM®	TRUECURRENT™*
Fairchild [®]	MotionMax™	STEALTH™	μSerDes™
Fairchild Semiconductor [®]	Motion-SPM [™]	SuperFET™	
FACT Quiet Series™	OptiHiT™	SuperSOT™-3	SerDes"
FACT	OPTOLOGIC®	SuperSOT™-6	UHC®
FAST®	OPTOPLANAR®	SuperSOT™-8	Ultra FRFET™
FastvCore™	®	SupreMOS™	UniFET™
FETBench™		SyncFET™	VCX™
FlashWriter [®] *	PDP SPM™	Sync-Lock™	VisualMax™
FPS™	-		XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS. SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev