
FDMC15N06 N-Channel MOSFET 55V, 15A, 0.090Ω

Features

- + $R_{DS(on)}$ = 0.075 Ω (Typ.)@ V_{GS} = 10V, I_D = 15A
- 100% Avalanche Tested
- RoHS Compliant

Description

These N-Channel power MOSFETs are manufactured using the innovative UltraFET process. This advanced process technology achieves the lowest possible on-resistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching converters, motor drivers, relay drivers, lowvoltage bus switches, and power management in portable and battery-operated products.

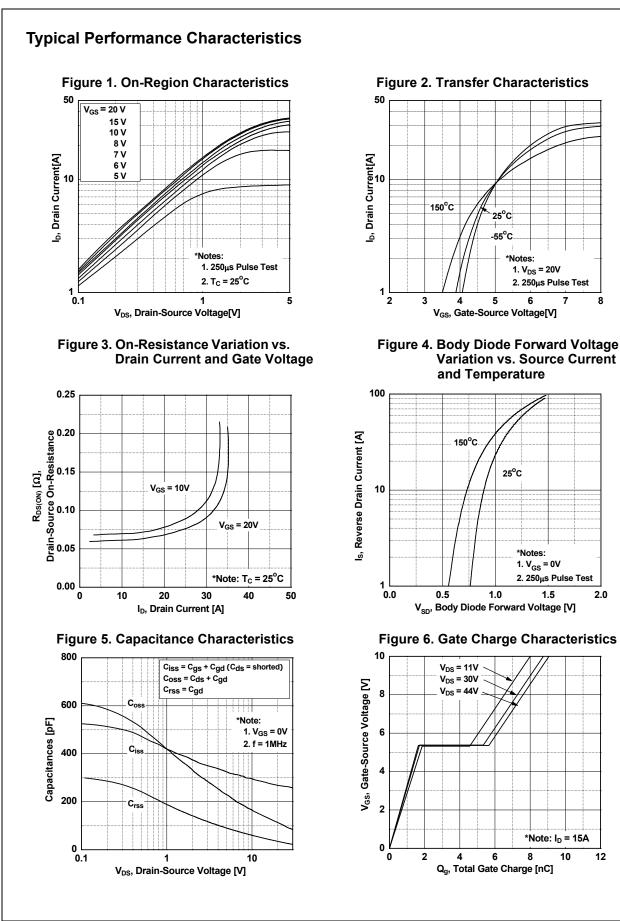
MOSFET Maximum Ratings T_C = 25°C unless otherwise noted

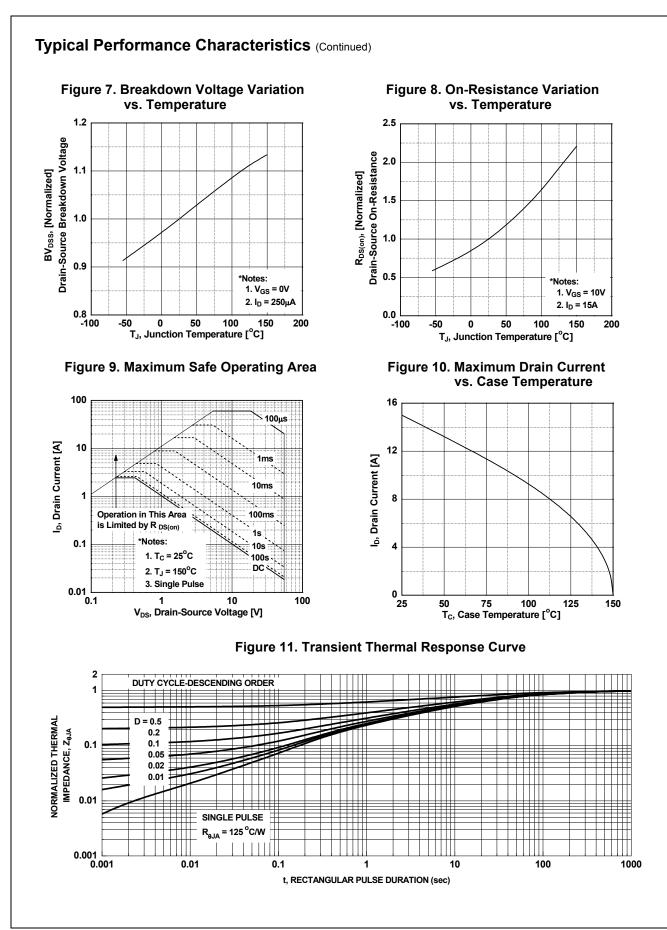
Symbol	Parameter			FDMC15N06	Units	
V _{DSS}	Drain to Source Voltage			55	V	
V _{GSS}	Gate to Source Voltage			±20	V	
		-Continuous ($T_C = 25^{\circ}C$)		15	— A	
Ι _D	Drain Current	-Continuous (T _C = 100 ^o C)		9		
		- Continuous (T _A = 25 ^o C)	(Note 1a)	2.4	А	
I _{DM}	Drain Current	- Pulsed	(Note 2)	60	Α	
E _{AS}	Single Pulsed Avalanche Energy (Note 3)			36	mJ	
I _{AR}	Avalanche Current			15	А	
E _{AR}	Repetitive Avalanche Energy			3.5	mJ	
P _D	Dower Dissinction	(T _C = 25°C)		35	W	
	Power Dissipation	$(T_{A} = 25^{\circ}C)$		2.3	W	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
TL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			300	°C	

Thermal Characteristics

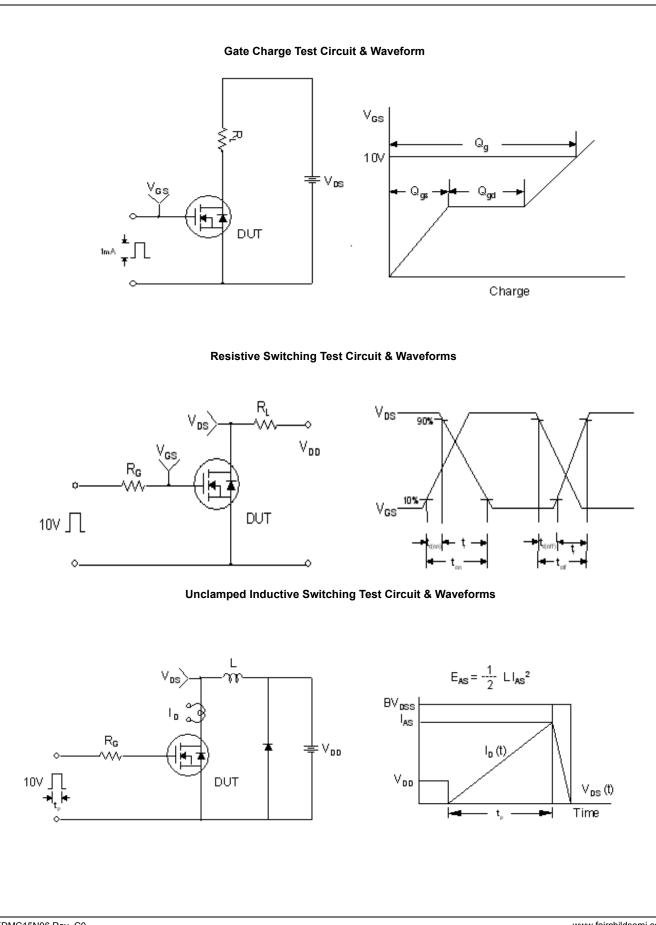
Symbol	Parameter	FDMC15N06	Units
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case, Max	3.5	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient, Max (Note 1a)	53	0/10

-		Packag	je	Reel Size	Тар	e Width		Quantit	ÿ	
		Power 3	33	13"	1	2mm		3000 units		
Electrica	I Chara	acteristics T_c =	25ºC unless	otherwise n	oted					
Symbol		Parameter		1	Test Condition	IS	Min.	Тур.	Max.	Units
Off Charac	teristics	5								
BV _{DSS}	Drain to	Source Breakdown V	oltage	lp = 250uA	A, V _{GS} = 0V, T ₀	$ = 25^{\circ}C $	55	-	_	V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient		0	$I_D = 250 \mu A$, Referenced to $25^{\circ}C$		-	70	-	V/ºC	
	7 0			V _{DS} = 50V, V _{GS} = 0V		-	-	1		
IDSS	Zero Ga	te Voltage Drain Curre	ent	V _{DS} = 45V	', T _C = 150 ^o C		-	-	250	μA
I _{GSS}	Gate to	Body Leakage Curren	t	V_{GS} = ±20	V, V _{DS} = 0V		-	-	±100	nA
On Charac	teristics	3								
V _{GS(th)}	Gate Th	reshold Voltage		$V_{GS} = V_{DG}$	_s , I _D = 250μA		2.0	-	4.0	V
R _{DS(on)}		rain to Source On Res	sistance		/, I _D = 15A		-	0.075	0.090	Ω
9 _{FS}	Forward	Transconductance		$V_{\rm DS} = 20V, I_{\rm D} = 15A$			-	5	-	S
Dynamic C	haracte	ristics		-					1	
C _{iss}	-	apacitance		$V_{DS} = 25V, V_{GS} = 0V$ f = 1MHz $V_{DS} = 30V, I_D = 15A$		-	265	350	pF	
C _{oss}		Capacitance				-	97	130	pF	
C _{rss}	•	Transfer Capacitance	9			-	28	42	pF	
Q _{g(tot)}		ite Charge at 10V				-	8.8	11.5	nC	
Q _{gs}		Source Gate Charge				-	1.7	-	nC	
Q _{gd}	Gate to	Drain "Miller" Charge	V _{GS} = 10V		/	(Note 4)	-	3.6	-	nC
Switching	Charact	teristics		-						
t _{d(on)}	-	Delay Time					-	9.5	29	ns
t _r		Rise Time		V _{DD} = 30V, I _D = 15A			-	36.5	83	ns
t _{d(off)}	Turn-Off Delay Time		$R_G = 25\Omega$		-	22.5	55	ns		
t _f		Fall Time		(Note 4)		-	22	54	ns	
Drain Sou		le Characteristic	c	_1			I.	L	1	
	- 1	n Continuous Drain to		e Forward (urrent		-	-	15	Α
l _s		n Pulsed Drain to Sou				-	-	60	A	
I _{SM} V _{SD}		Source Diode Forward		$V_{GS} = 0V, I_{SD} = 15A$		-	-	1.25	V	
t _{rr}		Recovery Time	a ronago	$V_{GS} = 0V,$	-		-	30	-	ns
Q _{rr}		Recovery Charge		$dl_F/dt = 10$		(Note 5)	-	35	-	nC
Notes:		, 0			· ·	, ,				1
 R_{0JA} is determine the user's board of 		levice mounted on a 1 in ² pac	d 2 oz copper pad	on a 1.5 x 1.5 i	n. board of FR-4 ma	terial. $R_{\theta JC}$ is g	uaranteed by	design while	R _{0CA} is dete	ermined by
		a 53 °CN	V when mounted c	าก			b 125 °	C/W when me	ounted on	
			pad of 2 oz copp					mum pad of		
	 				aî	-				
	લ	P				r				
					- 7					
	000	000			0	000				
		õõõ			00	000				

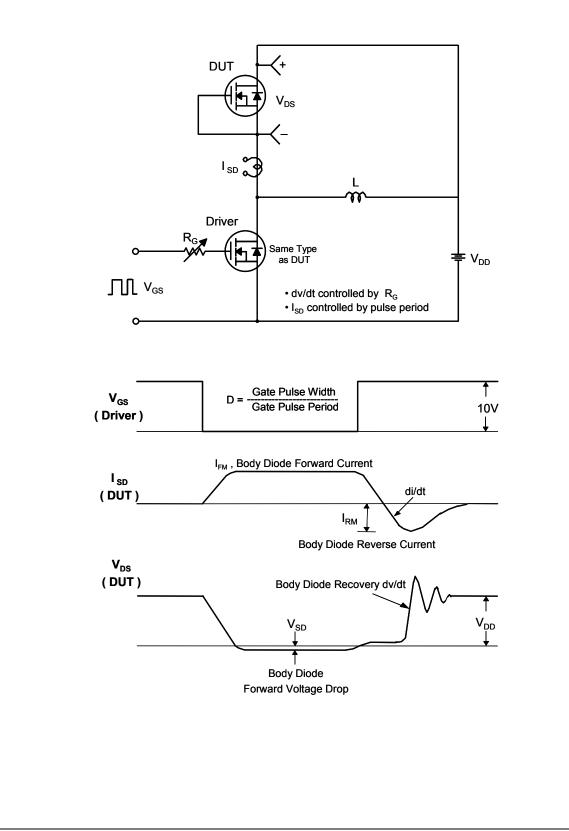

2: Repetitive Rating: Pulse width limited by maximum junction temperature 3: L = 1mH, I_{AS} = 8.5A, R_G = 25 Ω , Starting T_J = 25 $^\circ$ C

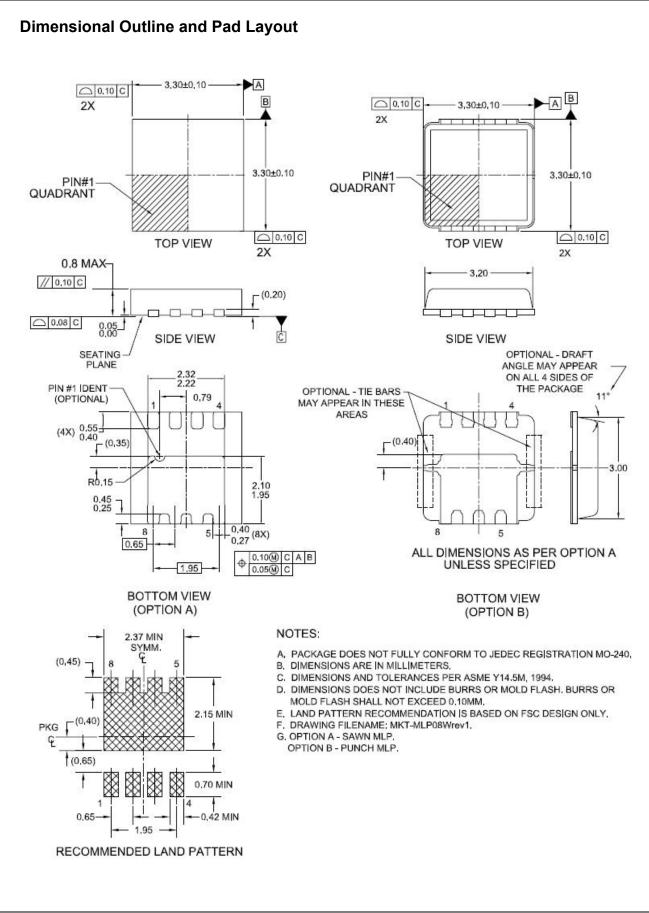

4: Essentially Independent of Operating Temperature Typical Characteristics

5: I_{SD} \leq 15A, di/dt \leq 200A/µs, V_{DD} \leq 40V, Starting T_J = 25°C


FDMC15N06 Rev. C0

FDMC15N06 N-Channel MOSFET




FDMC15N06 N-Channel MOSFET

FDMC15N06 N-Channel MOSFET

7

SEMICONDUCTOR

DMC15N06 N-Channel MOSFE

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™	F-PFS™	PowerTrench [®]	The Power Franchise [®]
AccuPower™	FRFET®	PowerXS™	the .
AX-CAP™*	Global Power Resource SM	Programmable Active Droop™	puwer
BitSiC [®]	Green Bridge™	QFĔT®	franchise TinyBoost™
Build it Now™	Green FPS™	QS™	
CorePLUS™	Green FPS™ e-Series™	Quiet Series™	TinyBuck™
CorePOWER™	Gmax™	RapidConfigure [™]	TinyCalc™
CROSSVOLT™	GTO™	TM State	TinyLogic®
CTL™	IntelliMAX™		TINYOPTO™
Current Transfer Logic™	ISOPLANAR™	Saving our world, 1mW/W/kW at a time™	TinyPower™ Tiny Diamata
DEUXPEED®	Marking Small Speakers Sound Louder	SignalWise™	TinyPWM™
Dual Cool™	and Better™	SmartMax™	TinyWire™
EcoSPARK [®]	MegaBuck™	SMART START™	TranSiC [®]
EfficentMax™	MICROCOUPLER™	Solutions for Your Success™	TriFault Detect™
ESBC™	MicroFET™	SPM [®]	TRUECURRENT®*
	MicroPak™	STEALTH™	µSerDes™
F	MicroPak2™	SuperFET®	
Fairchild [®]	MillerDrive™	SuperSOT™-3	/ Ser <mark>Des</mark> ™
Fairchild Semiconductor [®]	MotionMax™	SuperSOT™-6	UHC [®]
FACT Quiet Series™	Motion-SPM™	SuperSOT™-8	Ultra FRFET™
FACT	mWSaver™	SupreMOS [®]	UniFET™
FAST®	OptoHiT™	SyncFET™	VCX™
FastvCore™	OPTOLOGIC®	Sync-Lock™	VisualMax™
FETBench™	OPTOPLANAR [®]		VoltagePlus™
FlashWriter [®] *		SYSTEM ®*	XS™
FPS™	®	GENERAL	
110			

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or 2. system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev