

FAIRCHILD

November 2012

D

D

D

D

8

7

6

5

► Application

Bottom

General Description

motor control.

These P-Channel MOSFET enhancement mode power field effect transistors are produced using Fairchild's proprietary,

planar stripe, DMOS technology. This advanced technology has

been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy

pulse in the avalanche and commutation mode. These devices

are well suited for low voltage applications such as audio amplifier, high efficiency switching DC/DC converters, and DC

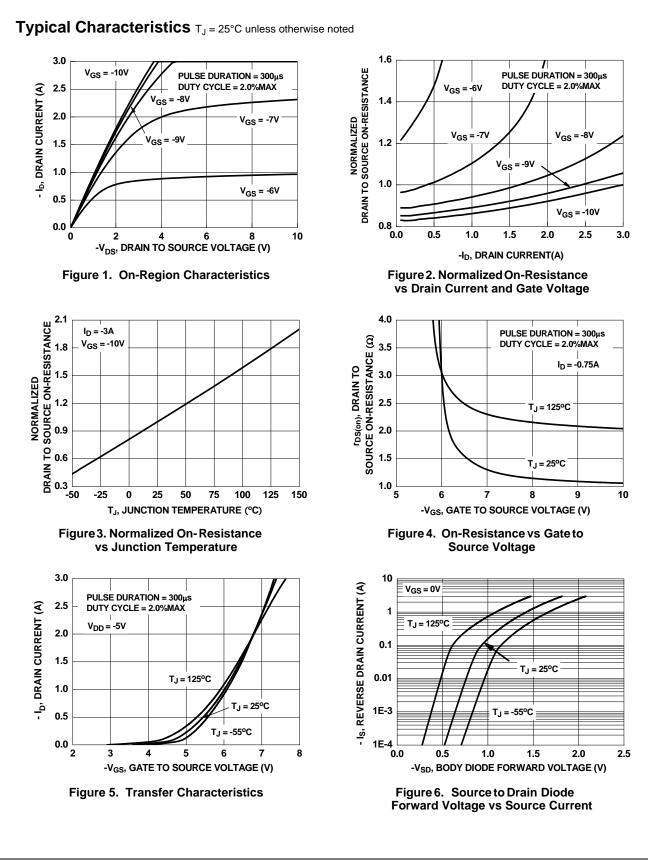
MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units	
V _{DS}	Drain to Source Voltage	-150	V	
V _{GS}	Gate to Source Voltage	±30	V	
	Drain Current -Continuous $T_C = 25^{\circ}C$	-3		
I _D	-Continuous T _C = 100°C	-1.8	Α	
	-Pulsed	-12		
P _D	Power Dissipation (Steady State) $T_{C} = 25^{\circ}C$	42	W	
E _{AS}	Single Pulse Avalanche Energy (Note 5)	3.3	mJ	
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C	
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds	300	°C	
dv/dt	Peak Diode Recovery dv/dt (Note 2)	-5	V/ns	

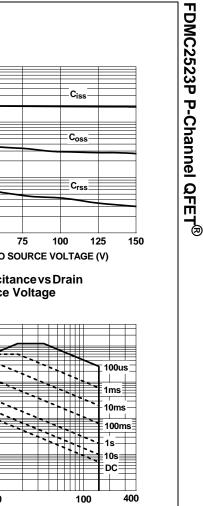
Thermal Characteristics

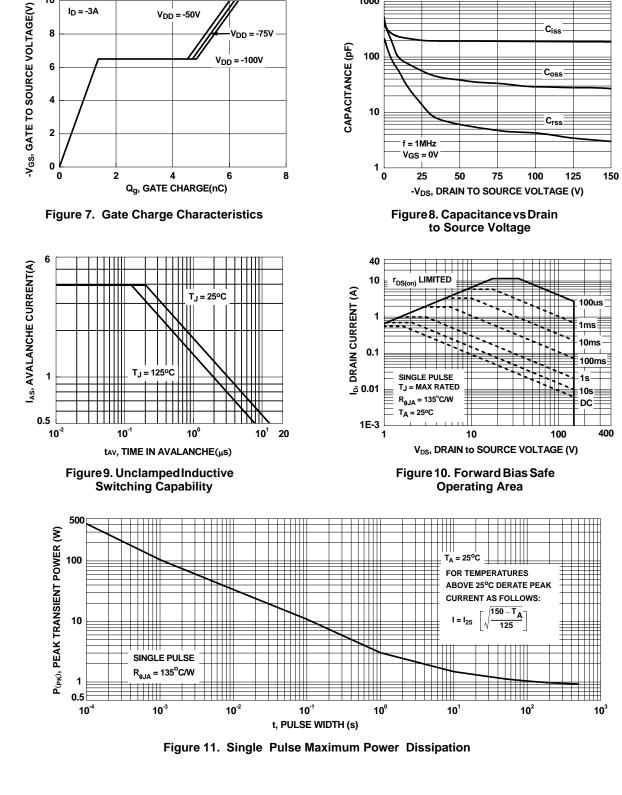
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	(Note 1)	3.0	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	60	C/W

Package Marking and Ordering Information


Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMC2523P	FDMC2523P	MLP 3.3x3.3	13 "	12 mm	3000 units

FDMC2523P P-Channel QFET®

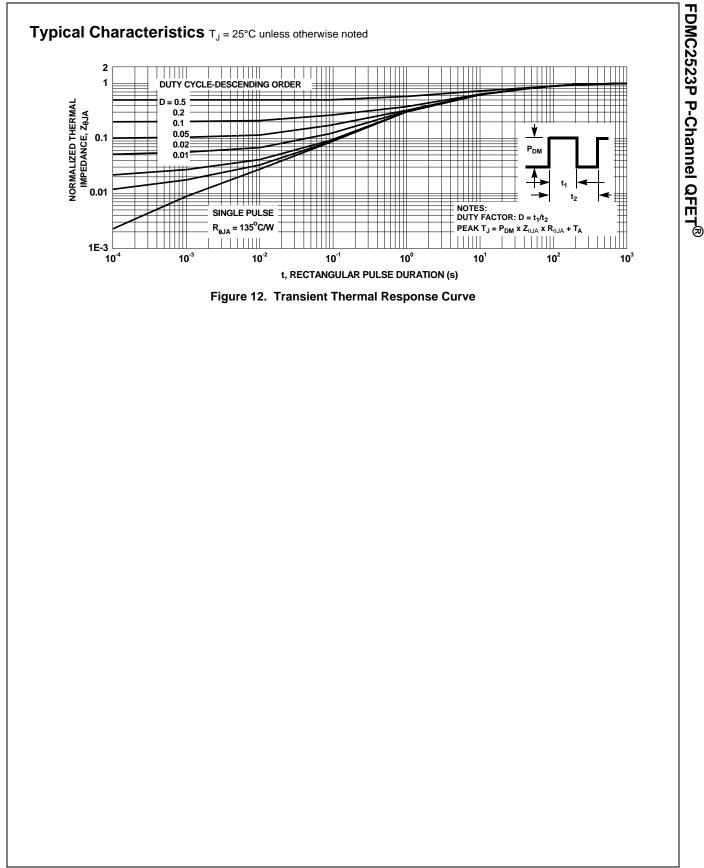

eristics Drain to Source Breakdown Voltage			Тур	Max	Units
				l.	
JIAID TO SOUICE BLEAKOOWD VOIIADE	I _D = -250μA, V _{GS} = 0V	-150			V
Breakdown Voltage Temperature		100			
Coefficient	$I_D = -250\mu A$, referenced to 25°C		-138		mV/°C
Zero Gate Voltage Drain Current	$V_{DS} = -150V, V_{GS} = 0V$			-1	μA
ero Gale voltage Drain Current				-10	μΑ
Gate to Source Leakage Current	$V_{GS} = \pm 30V, V_{DS} = 0V$			±100	nA
eristics					
	$V_{CS} = V_{DS}$, $I_{D} = -250 \mu A$	-3	-3.8	-5	V
· · · · · · · · · · · · · · · · · · ·		-			
emperature Coefficient	$I_D = -250 \mu A$, referenced to 25°C		6		mV/°C
Natio Drain to Source On Desistance	V _{GS} = -10V, I _D = -1.5A		1.1	1.5	Ω
static Drain to Source On Resistance	V _{GS} = -10V, I _D = -1.5A , T _J = 125°C		2.0	3.6	
Forward Transconductance	$V_{DS} = -40V, I_D = -1.5A$ (Note 4)		1.4		S
aractoristics					
			200	270	pF
	$V_{DS} = -25V, V_{GS} = 0V,$				pF
	f = 1MHz				pF
•	f – 1MHz	0.1	-		Ω
Turn-On Delay Time Rise Time	V _{DD} = -75V, I _D = -3A		15	27	ns
lisa Tima					
	$V_{GS} = -10V, R_{GEN} = 25\Omega$		11	20	ns
urn-Off Delay Time	$V_{GS} = -10V, R_{GEN} = 25\Omega$ (Note 3,4)		19	35	ns
Turn-Off Delay Time	(Note 3,4)		19 13	35 24	ns ns
Turn-Off Delay Time Fall Time Total Gate Charge	(Note 3,4) - V _{GS} = -10V		19 13 6.2	35	ns ns nC
Furn-Off Delay Time Fall Time Fotal Gate Charge Gate to Source Gate Charge	(Note 3,4) V _{GS} = -10V V _{DD} = -75V		19 13	35 24	ns ns
Turn-Off Delay Time Fall Time Total Gate Charge	(Note 3,4) - V _{GS} = -10V		19 13 6.2	35 24	ns ns nC
Furn-Off Delay Time Fall Time Fotal Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge	(Note 3,4) $V_{GS} = -10V$ $V_{DD} = -75V$ $I_D = -3A$		19 13 6.2 1.4	35 24	ns ns nC nC
Furn-Off Delay Time Fall Time Fotal Gate Charge Gate to Source Gate Charge	(Note 3,4) $V_{GS} = -10V$ $V_{DD} = -75V$ $I_D = -3A$ (Note 3,4)		19 13 6.2 1.4	35 24	ns ns nC nC
Turn-Off Delay Time Tall Time Total Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge Ce Diode Characteristics	(Note 3,4) = (Note 3,4)		19 13 6.2 1.4	35 24 9	ns ns nC nC
Turn-Off Delay Time Fall Time Total Gate Charge State to Source Gate Charge State to Drain "Miller" Charge Ce Diode Characteristics Maximum continuous Drain - Source Diode Maximum Pulse Drain - Source Doide For	$(Note 3,4) = (V_{GS} = -10V)$ $V_{DD} = -75V$ $I_{D} = -3A$ $(Note 3,4)$ $(Note 3,4)$ $(Note 3,4)$		19 13 6.2 1.4	35 24 9 -3	ns nC nC nC
Furn-Off Delay Time Fall Time Fotal Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge Ce Diode Characteristics Maximum continuous Drain - Source Diod	(Note 3,4) = (Note 3,4)		19 13 6.2 1.4 3.3	35 24 9 -3 -12	ns ns nC nC nC A A
	eristics aate to Source Threshold Voltage aate to Source Threshold Voltage emperature Coefficient tatic Drain to Source On Resistance orward Transconductance maracteristics nput Capacitance putput Capacitance everse Transfer Capacitance aate Resistance Characteristics	T = 125°CT =	T = 125°C T = 100000000000000000000000000000000000	TotalT_J = 125°CTake to Source Leakage Current $V_{GS} = \pm 30V, V_{DS} = 0V$ PeristicsParate to Source Threshold Voltage emperature Coefficient $V_{GS} = V_{DS}, I_D = -250\mu A$ -3 $I_D = -250\mu A, referenced to 25°C6V_{GS} = -10V, I_D = -1.5A1.1V_{GS} = -10V, I_D = -1.5A1.1V_{GS} = -10V, I_D = -1.5A, T_J = 125°C2.0orward TransconductanceV_{DS} = -40V, I_D = -1.5A (Note 4)1.4ParacteristicsV_{DS} = -25V, V_{GS} = 0V, I_D = -1.5A (Note 4)1.4put Capacitanceeverse Transfer CapacitanceV_{DS} = -25V, V_{GS} = 0V, I_D = -1.5A (Note 4)10iate Resistancef = 1MHz0.17.5tharacteristics101.4$	T = 125°C-10iate to Source Leakage Current $V_{GS} = \pm 30V, V_{DS} = 0V$ ± 100 eristicsiate to Source Threshold Voltage $V_{GS} = V_{DS}, I_D = -250\mu A$ -3 -3.8 -5 iate to Source Threshold Voltage $I_D = -250\mu A$, referenced to 25°C6 0 emperature Coefficient $V_{GS} = -10V, I_D = -1.5A$ 1.1 1.5 tatic Drain to Source On Resistance $V_{GS} = -10V, I_D = -1.5A, T_J = 125°C$ 2.0 3.6 orward Transconductance $V_{DS} = -40V, I_D = -1.5A$ (Note 4) 1.4 1.4 maracteristics $V_{DS} = -25V, V_{GS} = 0V, I_D = -1.5A$ (Note 4) 1.4 maracteristics $V_{DS} = -25V, V_{GS} = 0V, I_D = -1.5A$ (Note 4) 1.60 input Capacitance $V_{DS} = -25V, V_{GS} = 0V, I_D = -1.5A$ (Note 4) 1.5 input Capacitance $V_{DS} = -25V, V_{GS} = 0V, I_D = -1.5A$ (Note 4) 1.60 input Capacitance $V_{DS} = -25V, V_{GS} = 0V, I_D = -1.5A$ (Note 4) 1.5 interestics $I_D = -1.5A$ (Note 4) $I_D = -1.5A$ interestics $I_D = -1.5A$ (Note 4) $I_D = -1.5A$ interestics $I_D = -1.5A$ (Note 4) $I_D = -1.5A$ interestics $I_D = -1.5A$ (Note 4) $I_D = -1.5A$ interestics $I_D = -1.5A$ (Note 4) $I_D = -1.5A$ interestics $I_D = -1.5A$ (Note 4) $I_D = -1.5A$ interestics $I_D = -1.5A$ (Note 4) $I_D = -1.5A$ interestics $I_D = -1.5A$ (Note 4) $I_D = -1.5A$ interestics $I_D = -1.5A$ (Note 4) $I_D = -1.5A$ </td

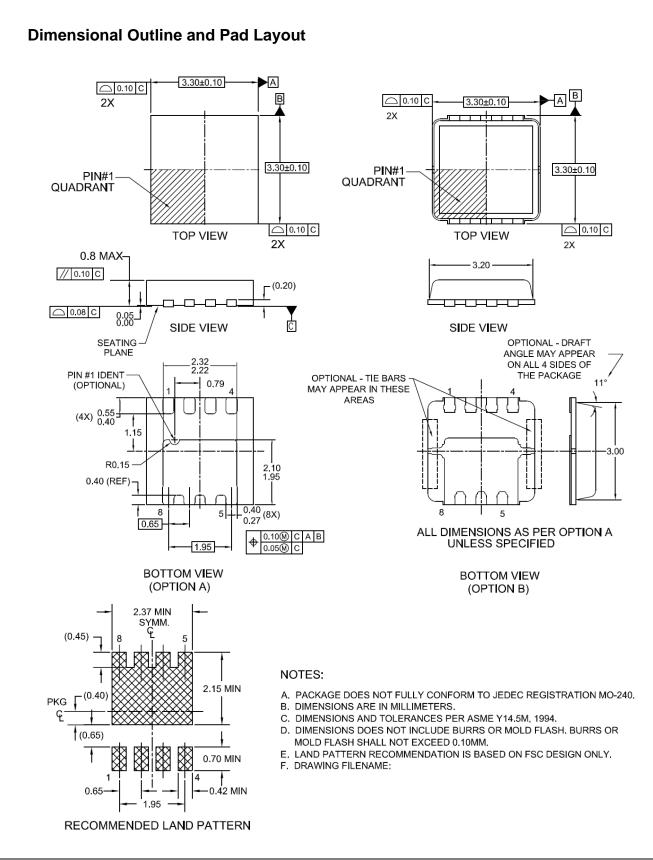

Pulse Test: Pulse Width < 300µs, Duty cycle < 2.0%.
 Essentially independent of operating temperature.
 E_{AS} of 3.3 mJ is based on starting T_J = 25 °C; P-ch: L = 3 mH, I_{AS} = -1.5 A, V_{DD} = -150 V, V_{GS} = -10 V.

www.fairchildsemi.com

www.fairchildsemi.com

1000


Typical Characteristics T_J = 25°C unless otherwise noted


10

FDMC2523P Rev.C4

4

www.fairchildsemi.com

FDMC2523P Rev.C4

www.fairchildsemi.com

FDMC2523P P-Channel QFET[®]

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

PowerTrench[®]

Quiet Series™

тм

SmartMax™

STEALTH™

SuperFET[®] SuperSOT™-3

SuperSOT™-6

SuperSOT™-8

SupreMOS®

Sync-Lock™

GENERAL SYSTEM ®*

SyncFET™

RapidConfigure™

SMART START™ Solutions for Your Success™ SPM[®]

Programmable Active Droop™

Saving our world, 1mW/W/kW at a time™ SignalWise™

PowerXS™

QFET[®]

QS™

2Cool™
AccuPower™
AX-CAP™*
BitSiC [®]
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic [™]
DEUXPEED®
Dual Cool™
EcoSPARK [®]
EfficentMax™
ESBC™

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FETBench™ FlashWriter[®] *

FPS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

F-PFS™

FRFET®

Gmax™

GTO™

Green Bridge™

Green FPS™

IntelliMAX™

and Better™

MegaBuck™

MicroFET™

MicroPak™

MicroPak2™

MillerDrive™

MotionMax™

Motion-SPM™

OPTOLOGIC[®]

OPTOPLANAR[®]

mWSaver™

OptoHiT™

R

MICROCOUPLER™

ISOPLANAR™

Global Power ResourceSM

Green FPS™ e-Series™

Marking Small Speakers Sound Louder

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed Full Production Datasheet contains final specifications. Fairchild Semiconductor reserves make changes at any time without notice to improve the design.		Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

The Power Franchise®

bwer

franchise TinyBoost™

TinyBuck™

TinyCalc™

TinyLogic®

TIŃYOPTO™

TinyPower™

TinyPWM™

TriFault Detect™

TRUECURRENT®*

TinyWire™

<u>µSerD</u>es™

Ultra FRFET™

 $\mu_{_{
m Ser}}$

UHC®

UniFET™

VisualMax™

VoltagePlus™

VCX™

XS™

TranSiC[®]

Rev. 161