

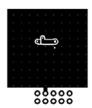
MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			220	V	
V _{GS}	Gate to Source Voltage			±20	V	
ID	Drain Current -Continuous (Silicon limited)	T _C = 25°C		7.0		
	-Continuous	T _A = 25°C	(Note 1b)	1.0	A	
	-Pulsed			13.8		
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	11	mJ	
P _D	Power Dissipation	T _C = 25°C		42	W	
	Power Dissipation	T _A = 25°C	(Note 1a)	2.1	vv	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C	
	haracteristics					
R _{0JC}	Thermal Resistance, Junction to Case		(Note 1)	3.0	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	60	0,11			

FAIRCHILD SEMICONDUCTOR

FDMC2674

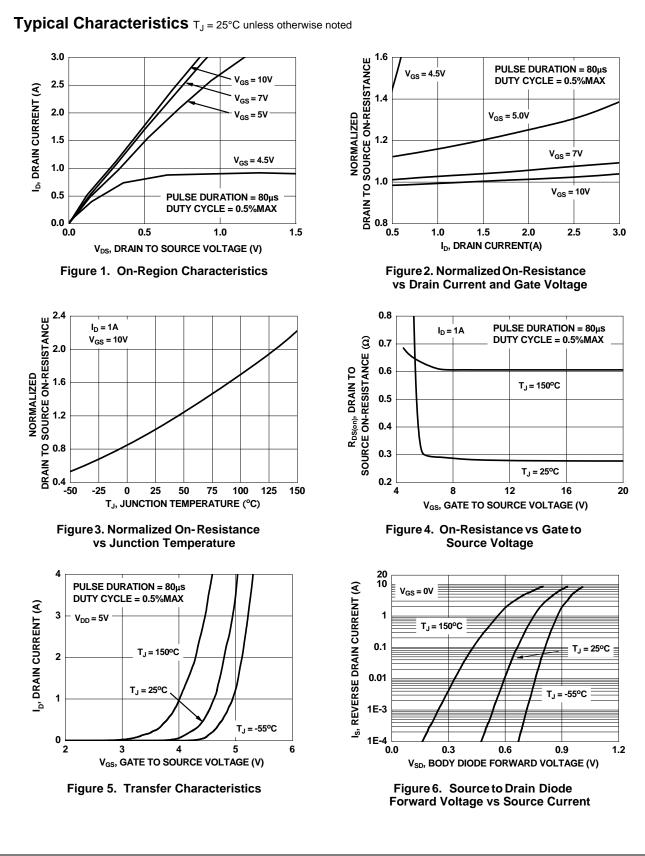
November 2012

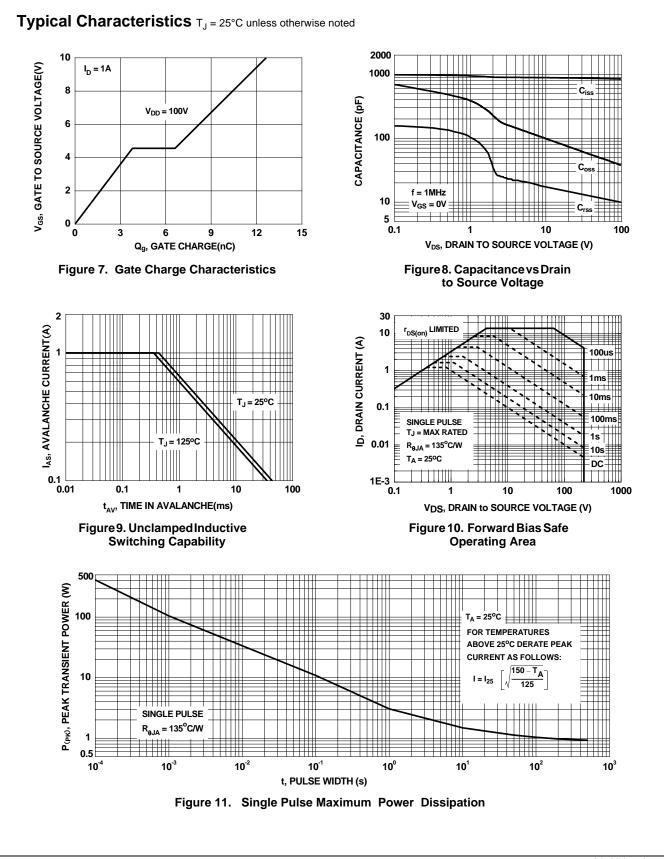

G

S

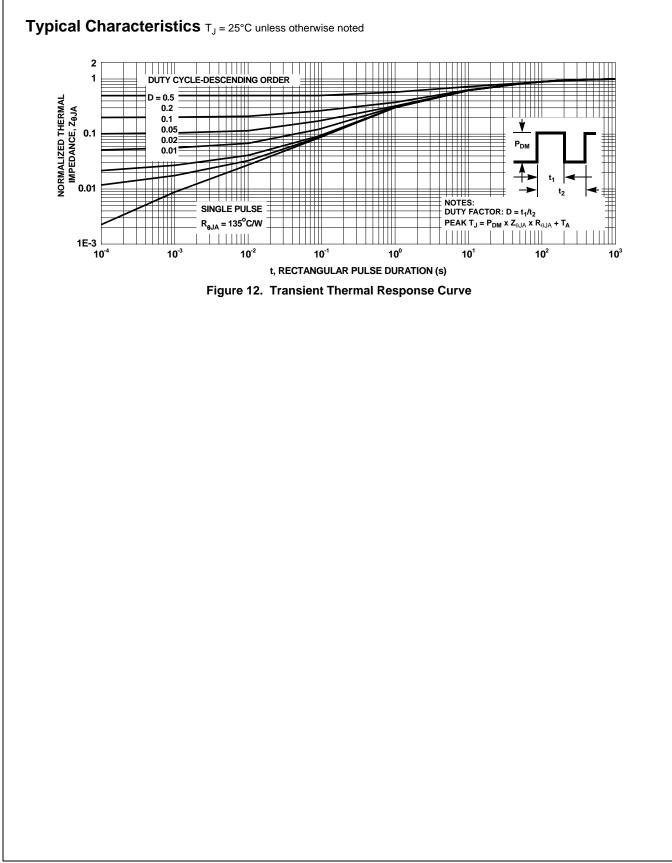
S

S

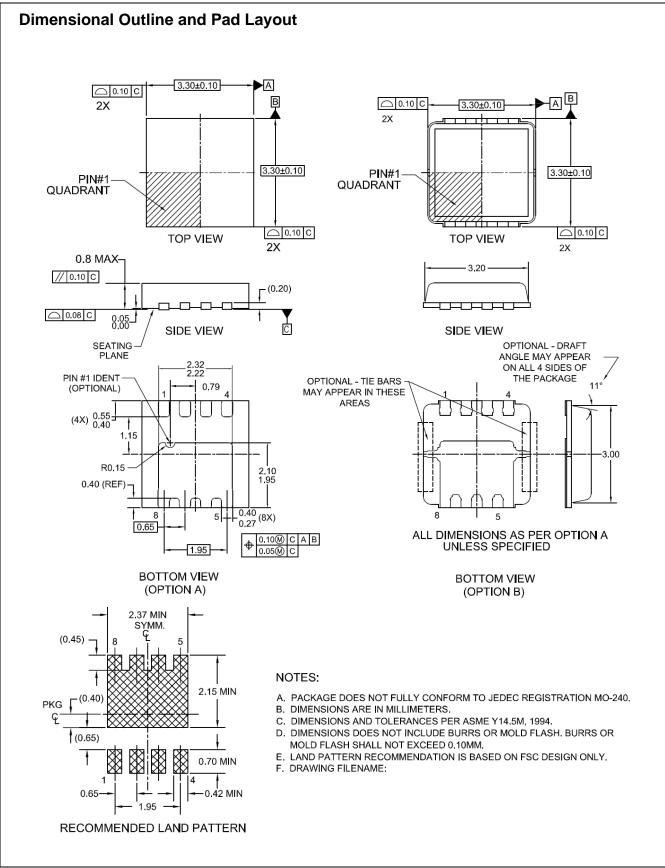

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_{D} = 250 \mu A, V_{GS} = 0 V$	220			V
ΔBV _{DSS} ΔTJ	Breakdown Voltage Temperature Coefficient	$I_D = 250\mu A$, referenced to 25°C		248		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 176V, V _{GS} = 0V			1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA
	cteristics				-	-
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	2	3.4	4	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \mu A$, referenced to 25°C				mV/°C
r _{DS(on)}		V _{GS} = 10V, I _D = 1.0A		305	366	
	Static Drain to Source On Resistance	$V_{GS} = 10V, I_D = 1.0A, T_J = 150^{\circ}C$		678	814	mΩ
C _{iss}	Characteristics Input Capacitance	V 400V/V 0V		880	1180	pF
C _{iss}	Output Capacitance	V _{DS} = 100V, V _{GS} = 0V,		70	95	pF pF
C _{oss} C _{rss}	Reverse Transfer Capacitance	f = 1MHz		11	20	pF
	q Characteristics					
	Turn-On Delay Time			9	18	ns
t _{d(on)}		$V_{DD} = 100V, I_D = 1.0A$		9 13	18 23	ns ns
d(on)	Turn-On Delay Time	$V_{DD} = 100V, I_D = 1.0A$ $V_{GS} = 10V, R_{GEN} = 2.4\Omega$		-	-	-
t _{d(on)} t _r td(off)	Turn-On Delay Time Rise Time	$-V_{GS} = 10V, R_{GEN} = 2.4\Omega$		13	23	ns
t _{d(on)} t _r t _{d(off)} t _f	Turn-On Delay Time Rise Time Turn-Off Delay Time	$-V_{GS} = 10V, R_{GEN} = 2.4\Omega$		13 15	23 27	ns ns
t _{d(on)} t _r t _{d(off)} t _f Q _{g(TOT)}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time			13 15 21	23 27 34	ns ns ns
Switching t _{d(on)} t _r t _{d(off)} t _f Q _{g(TOT)} Q _{gd}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge at 10V	$V_{GS} = 10V, R_{GEN} = 2.4\Omega$ V _{GS} = 0V to 10V V _{DD} = 15V		13 15 21 12.7	23 27 34	ns ns ns nC
t _{d(on)} t _r t _{d(off)} t _f Q _{g(TOT)} Q _{gs} Q _{gd}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge at 10V Gate to Source Gate Charge	$V_{GS} = 10V, R_{GEN} = 2.4\Omega$ V _{GS} = 0V to 10V V _{DD} = 15V		13 15 21 12.7 3.8	23 27 34	ns ns ns nC nC
t _{d(on)} t _r t _{d(off)} t _f Q _{g(TOT)} Q _{gs} Q _{gd} Drain-So t	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge at 10V Gate to Source Gate Charge Gate to Drain "Miller" Charge	$V_{GS} = 10V, R_{GEN} = 2.4\Omega$ V _{GS} = 0V to 10V V _{DD} = 15V		13 15 21 12.7 3.8	23 27 34	ns ns ns nC nC
t _{d(on)} t <u>r</u> td(off) tf Q _{g(TOT)} Q _{gs} Q _{gd}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge at 10V Gate to Source Gate Charge Gate to Drain "Miller" Charge urce Diode Characteristics	$V_{GS} = 10V, R_{GEN} = 2.4Ω$ $V_{GS} = 0V \text{ to } 10V$ $V_{DD} = 15V$ $I_D = 1.0A$		13 15 21 12.7 3.8 2.9	23 27 34 18	ns ns nC nC nC


a. 60°C/W when mounted on a 1 in² pad of 2 oz copper

b. 135°C/W when mounted on a minimum pad of 2 oz copper



www.fairchildsemi.com



www.fairchildsemi.com

FDMC2674 N-Channel UltraFET Trench MOSFET

FDMC2674 N-Channel UltraFET Trench MOSFET

6

www.fairchildsemi.com

FDMC2674 N-Channel UltraFET Trench MOSFET

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

PowerTrench[®]

2Cool™	F-PFS™
AccuPower™	FRFET [®]
AX-CAP™*	Global Power Resource SM
BitSiC [®]	Green Bridge™
Build it Now™	Green FPS [™]
CorePLUS™	Green FPS™ e-Series™
CorePOWER™	G <i>max</i> ™
CROSSVOLT™	GTO™
CTL™	IntelliMAX™
Current Transfer Logic™	ISOPLANAR™
DEUXPEED®	Marking Small Speakers S
Dual Cool™	and Better™
EcoSPARK [®]	MegaBuck™
EfficentMax™	MICROCOUPLER™
ESBC™	MicroFET™
R	MicroPak™
F [®] .	MicroPak2™
Fairchild [®]	MillerDrive™
Fairchild Semiconductor [®]	MotionMax™
FACT Quiet Series™	Motion-SPM [™]
FACT®	mWSaver™
FAST®	OptoHiT™
FastvCore [™]	OPTOLOGIC [®]
FETBench™	OPTOPLANAR [®]

PowerXS[™] Programmable Active Droop[™] QFET[®] QS™ Quiet Series™ RapidConfigure™ тм Saving our world, 1mW/W/kW at a time™ Sound Louder SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM[®] STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™ GENERAL ®*

bwer p franchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC® TriFault Detect™ TRUECURRENT®* uSerDes™ $\mu_{_{
m Ser}}$ UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™

VoltagePlus™

XS™

The Power Franchise®

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

 $(\mathbf{l})_{\mathbf{R}}$

DISCLAIMER

FlashWriter[®] *

FPS™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which. (a) are 1 intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or 2 system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 161