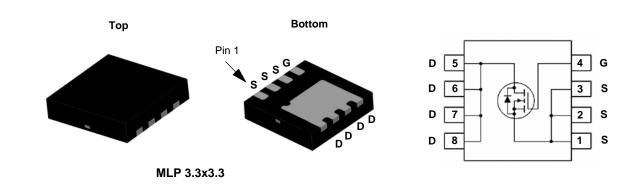


FDMC7680 N-Channel Power Trench[®] MOSFET 30 V, 14.8 A, 7.2 m Ω

Features

- Max $r_{DS(on)}$ = 7.2 m Ω at V_{GS} = 10 V, I_D = 14.8 A
- Max r_{DS(on)} = 9.5 mΩ at V_{GS} = 4.5 V, I_D = 12.4 A
- High performance technology for extremely low r_{DS(on)}
- Termination is Lead-free and RoHS Compliant



General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced Power Trench[®] process that has been especially tailored to minimize the on-state resistance. This device is well suited for Power Management and load switching applications common in Notebook Computers and Portable Battery Packs.

Application

- DC DC Buck Converters
- Notebook battery power management
- Load switch in Notebook

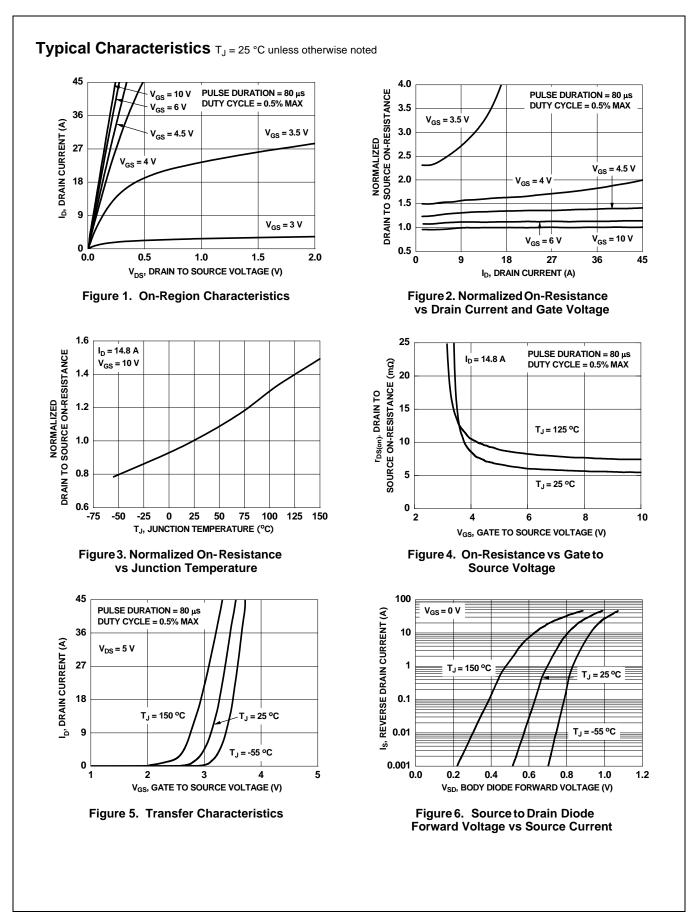
MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter			Ratings	Units
V _{DS}	Drain to Source Voltage			30	V
V _{GS}	Gate to Source Voltage			±20	V
	Drain Current -Continuous (Package limited)	T _C = 25 °C		18	
I _D	-Continuous	T _A = 25 °C	(Note 1a)	14.8	Α
	-Pulsed			45	
E _{AS}	Single Pulse Avalanche Energy (Note 3)			72	mJ
Р	Power Dissipation	T _C = 25 °C		31	w
P _D	Power Dissipation $T_A = 25 \text{ °C}$ (Note 1a)			2.3	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C

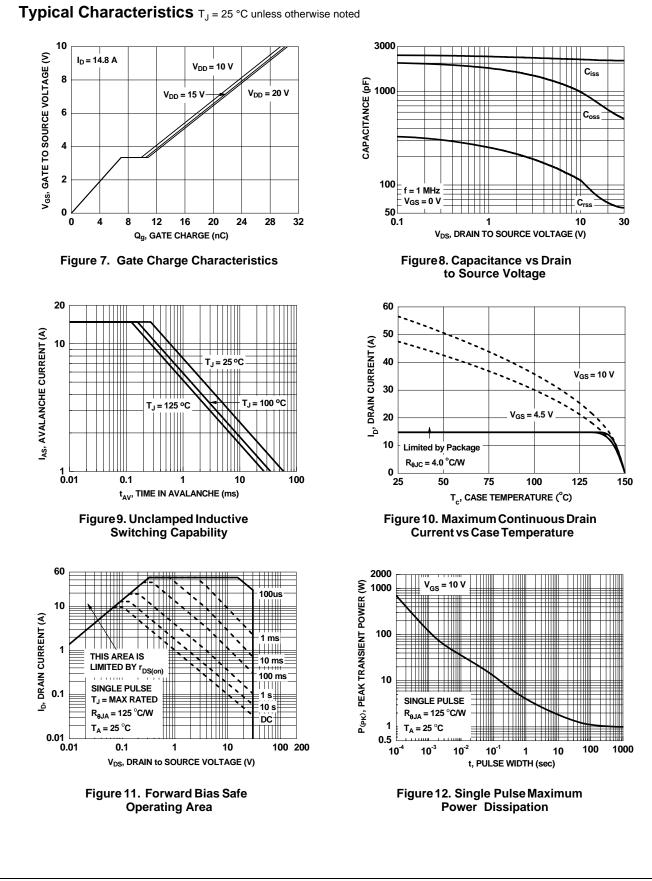
Thermal Characteristics

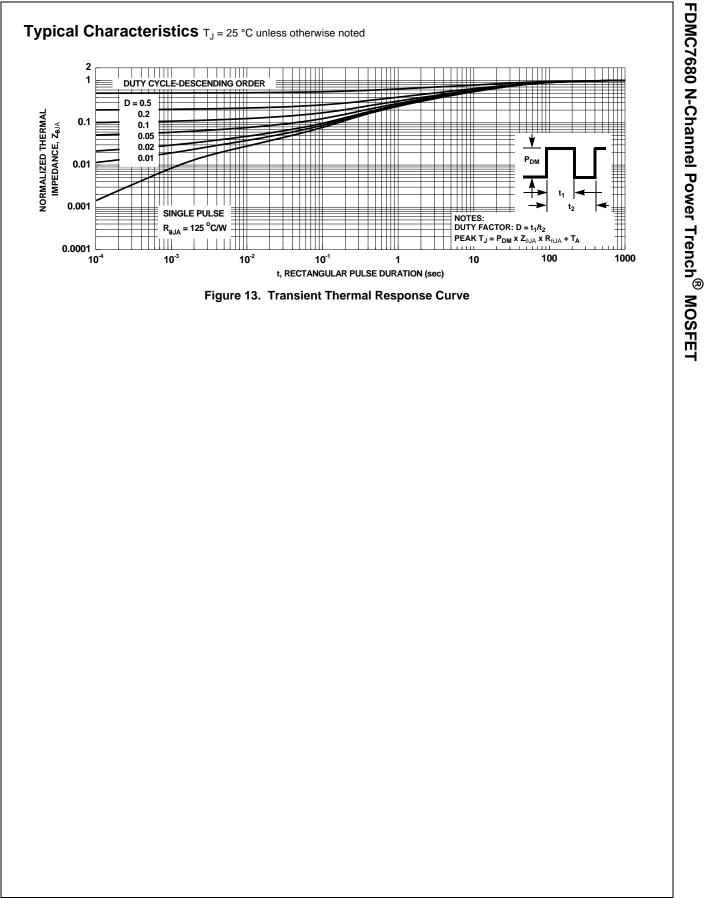
R_{\thetaJC}	Thermal Resistance, Junction to Case	4.0	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Note 1	a) 53	C/VV

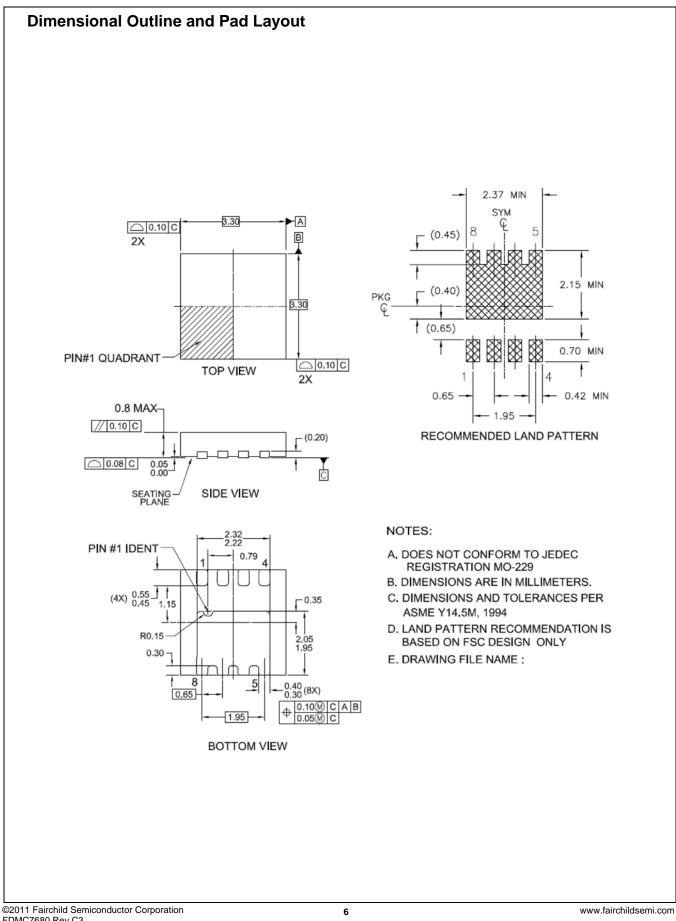
Package Marking and Ordering Information


Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMC7680	FDMC7680	MLP 3.3x3.3	13 "	12 mm	3000 units

Off Characteristics BV_{DSS} Drain to Source Breakdown Voltage $I_D = 250 \ \mu$ A, $V_{GS} = 0 \ V$ 30Image: Constraint of Constraint	<i>l</i> lin Typ Max Uni	Min Typ	Test Conditions	Parameter	Symbol
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				cteristics	Off Chara
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	30 V	30	I _D = 250 μA, V _{GS} = 0 V	Drain to Source Breakdown Voltage	BV _{DSS}
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	15 mV/	15	$I_D = 250 \ \mu$ A, referenced to 25 °C		ΔBV_{DSS}
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	u/			Zero Gate Voltage Drain Current	I _{DSS}
$ \begin{array}{c c c c c c c c c } \hline V_{GS}(th) & Gate to Source Threshold Voltage & V_{GS} = V_{DS}, I_D = 250 \ \mu\text{A} & 1.2 & 2.0 & 3.0 \\ \hline \Delta V_{GS}(th) & Gate to Source Threshold Voltage Temperature Coefficient & I_D = 250 \ \mu\text{A}, referenced to 25 °C & -6 & V_{GS} = 10 \ V, I_D = 14.8 \ A & 5.8 & 7.2 \\ \hline V_{GS} = 10 \ V, I_D = 14.8 \ A & 5.8 & 7.2 \\ \hline V_{GS} = 10 \ V, I_D = 14.8 \ A & 7.3 & 9.5 \\ \hline V_{GS} = 10 \ V, I_D = 14.8 \ A & 7.4 & 9.2 \\ \hline g_{FS} & Forward Transconductance & V_{DD} = 5 \ V, I_D = 14.8 \ A & 68 & D \\ \hline Dynamic Characteristics \\ \hline C_{iss} & Input Capacitance & V_{DS} = 15 \ V, V_{GS} = 0 \ V, I_D = 14.8 \ A & 68 & 0.5 & 1.6 \\ \hline Switching Characteristics \\ \hline Switching Characteristics \\ \hline t_{d(off)} & Turn-On Delay Time & V_{DD} = 15 \ V, I_D = 14.8 \ A, & 4 & 10 \ V_{GS} = 10 \ V, R_{GEN} = 6 \ \Omega & 25 & 40 \ t_1 & 73 & 30 & 42 \\ \hline q_{grotT} & Total Gate Charge & V_{GS} = 0 \ V, I_D = 14.8 \ A & 7 & 3 & 10 \ Q_{gf}(TOT) & Total Gate Charge & V_{GS} = 0 \ V, I_D = 15 \ V, I_D = 14.8 \ A & 4 & 10 \ V_{GS} = 10 \ V, R_{GEN} = 6 \ \Omega & 25 \ 40 \ t_1 & 19 \ Q_{gs} & Total Gate Charge & V_{GS} = 0 \ V to 10 \ V \\ \hline q_{ggd} & Gate to Drain "Miller" Charge & V_{GS} = 0 \ V to 10 \ V \\ \hline Q_{gd} & Gate to Drain "Miller" Charge & V_{GS} = 0 \ V to 10 \ V_{DD} = 15 \ V & 14 \ 19 \ D \\ \hline Drain-Source Diode Characteristics \\ \hline V_{CS} = 0 \ V_{LS} = 14.8 \ A & 7 \ V_{CS} = 14.8 \ A & 7 \ V_{CS} = 14.8 \ A & 7 \ V_{CS} = 10 \ V, I_{S} = 14.8 \ A & 7 \ V_{CS} = 10 \ V, I_{S} = 14.8 \ A & 7 \ V_{CS} = 10 \ V, I_{S} = 14.8 \ A & 7 \ V_{CS} = 15 \ V & 14 \ 19 \ V_{DD} = 15 \ V & 14 \ 19 \ V_{DS} = 14.8 \ A & 7 \ V_{CS} = 0 \ V \ I_{S} = 14.8 \ A & 7 \ V_{CS} = 0 \ V \ I_{S} = 14.8 \ A & 7 \ V_{CS} = 0 \ V \ I_{S} = 14.8 \ A & 7 \ V_{CS} = 0 \ V \ I_{S} = 14.8 \ A & 7 \ V_{CS} = 0 \ V \ I_{S} = 14.8 \ A & 7 \ V_{CS} = 0 \ V \ I_{S} = 14.8 \ A & 7 \ V_{CS} = 0 \ V \ I_{S} = 14.8 \ A & 7 \ V_{CS} = 0 \ V \ I_{S} = 14.8 \ A & 7 \ V_{CS} = 0 \ V \ I_{S} = 14.8 \ A \ V_$			$V_{GS} = 20 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$	Gate to Source Leakage Current	I _{GSS}
$ \begin{array}{c c c c c c c c } \hline V_{GS(th)} & Gate to Source Threshold Voltage & V_{GS} = V_{DS}, I_D = 250 \ \mu\text{A} & 1.2 & 2.0 & 3.0 \\ \hline \Delta V_{GS(th)} & Gate to Source Threshold Voltage Temperature Coefficient & I_D = 250 \ \mu\text{A}, referenced to 25 °C & -6 & V_{GS} = 10 \ V, I_D = 14.8 \ A & 5.8 & 7.2 \\ \hline V_{GS} = 10 \ V, I_D = 14.8 \ A & 5.8 & 7.2 \\ \hline V_{GS} = 10 \ V, I_D = 14.8 \ A & 7.3 & 9.5 \\ \hline V_{GS} = 10 \ V, I_D = 14.8 \ A & 7.4 & 9.2 \\ \hline g_{FS} & Forward Transconductance & V_{DD} = 5 \ V, I_D = 14.8 \ A & 68 & D \\ \hline Dynamic Characteristics \\ \hline C_{iss} & Input Capacitance & V_{DS} = 15 \ V, V_{GS} = 0 \ V, I_D = 14.8 \ A & 770 & 1020 \\ \hline C_{rss} & Reverse Transfer Capacitance & I & 755 & 115 \\ \hline R_g & Gate Resistance & I & 0.5 & 1.6 \\ \hline Switching Characteristics \\ \hline t_{d(off)} & Turn-On Delay Time & V_{DD} = 15 \ V, I_D = 14.8 \ A, & 4 & 10 \\ \hline t_{d(off)} & Turn-Off Delay Time & V_{GS} = 0 \ V, I_D = 15 \ V, I_D = 14.8 \ A, & 4 & 10 \\ \hline t_g(rOT) & Total Gate Charge & V_{GS} = 0 \ V to 10 \ V & 0 \ S = 15 \ V, I_D = 15 \ V, I_D = 15 \ V, I_D = 14.8 \ A & 4 & 10 \\ \hline t_g(rOT) & Turn-Off Delay Time & V_{GS} = 0 \ V to 10 \ V & 0 \ S = 15 \ V, I_D = 15 \ V, I_D = 14.8 \ A & 4 & 10 \\ \hline t_g(rOT) & Turn-Off Delay Time & V_{GS} = 0 \ V to 10 \ V & 0 \ S = 15 \ V, I_D = 15 \ V, I_D = 14.8 \ A & 7 \ S & 115 \\ \hline Total Gate Charge & V_{GS} = 0 \ V to 10 \ V & 0 \ S = 15 \ V, I_D = 15 \ V & 14 \ 19 \\ \hline t_g(rOT) & Total Gate Charge & V_{GS} = 0 \ V to 10 \ V & 0 \ S & 14 \ 19 \ S & 10 \ V_{DD} = 15 \ V & 14 \ 19 \ S & 10 \ V_{DD} = 14.8 \ A & 7 \ S & 114 \ 19 \ S & 14 \ S & 10 \ S & 14 \ S & 115 \$	I I	I			On Chara
$ \begin{array}{c c c c c c c } \hline \Delta V_{GS}(m) \\ \hline \Delta T_J \\ \hline \hline$.2 2.0 3.0 V	1.2 2.0	$V_{ab} = V_{ab} = 250 \pm 0$		
$ \frac{1}{AT_{J}} \frac{1}{T} emperature Coefficient} \frac{1}{T_{D}} \frac{1}{T} emperature Coefficient} \frac{1}{T_{D}} \frac{1}{T} \frac{1}{T$.2 2.0 3.0 V	1.2 2.0			
	-6 mV/	-6			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
V _{GS} = 10 V, I _D = 14.8 A T _J = 125 °C 7.4 9.2 g _{FS} Forward Transconductance V _{DD} = 5 V, I _D = 14.8 A 68 Dynamic Characteristics C _{iss} Input Capacitance V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz 2145 2855 Coss Output Capacitance V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz 770 1020 Crss Reverse Transfer Capacitance V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz 775 115 Rg Gate Resistance 0.5 1.6 Switching Characteristics 12 22 td _(on) Turn-On Delay Time V _{DD} = 15 V, I _D = 14.8 A, V _{GS} = 10 V, R _{GEN} = 6 Ω 12 22 tf Fall Time 3 10 30 42 Qg(TOT) Total Gate Charge V _{GS} = 0 V to 10 V V _{GS} = 0 V to 4.5 V V _{DD} = 15 V 14 19 Qgs Total Gate Charge V _{GS} = 0 V to 4.5 V V _{DD} = 15 V 14 19 Qgd Gate to Drain "Miller" Charge V _{DD} = 0 V, I _D = 14.8 A 7 2 2 Drain-Source Diode Char	7.3 9.5 mg	7.3		Static Drain to Source On Resistance	rus(on)
Dynamic Characteristics C_{iss} Input Capacitance $V_{DS} = 15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ 2145 2855 C_{oss} Output Capacitance $f = 1 \text{ MHz}$ 770 1020 C_{rss} Reverse Transfer Capacitance $f = 1 \text{ MHz}$ 75 115 R_g Gate Resistance 0.5 1.6 Switching Characteristics $t_{d(on)}$ Turn-On Delay Time $V_{DD} = 15 \text{ V}, I_D = 14.8 \text{ A},$ 4 10 $t_{d(off)}$ Turn-Off Delay Time $V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$ 25 40 t_f Fall Time 3 10 30 42 $Q_{g(TOT)}$ Total Gate Charge $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{DD} = 15 \text{ V}$ 14 19 Q_{gd} Gate to Drain "Miller" Charge $V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ 14 19 Drain-Source Diode Characteristics	7.4 9.2	7.4	V _{GS} = 10 V, I _D = 14.8 A T _J = 125 °C		03(01)
C_{iss} Input Capacitance $V_{DS} = 15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ 2145 2855 C_{oss} Output Capacitance $f = 1 \text{ MHz}$ 770 1020 C_{rss} Reverse Transfer Capacitance $f = 1 \text{ MHz}$ 75 115 R_g Gate Resistance 0.5 1.6 Switching Characteristics $t_{d(on)}$ Turn-On Delay Time $V_{DD} = 15 \text{ V}, \text{ I}_D = 14.8 \text{ A},$ 4 10 $t_{d(off)}$ Turn-Off Delay Time $V_{GS} = 0 \text{ V to } 10 \text{ V},$ 25 40 t_f Fall Time $0.5 \text{ solution} 0.5 solut$	68 S	68	V _{DD} = 5 V, I _D = 14.8 A	Forward Transconductance	9 _{FS}
CissInput Capacitance $V_{DS} = 15 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$ 21452855CossOutput Capacitance $f = 1 \text{ MHz}$ 7701020CrssReverse Transfer Capacitance $f = 1 \text{ MHz}$ 75115RgGate Resistance0.51.6Switching Characteristics $t_{d(on)}$ Turn-On Delay Time $V_{DD} = 15 \text{ V}, \text{ I}_D = 14.8 \text{ A}, \text{ V}_{DS} = 10 \text{ V}, \text{ RgEN} = 6 \Omega$ 1222 $t_{d(off)}$ Turn-Off Delay Time $V_{GS} = 0 \text{ V to } 10 \text{ V}, \text{ RgEN} = 6 \Omega$ 2540 t_{f} Fall Time3103042 $Q_{g(TOT)}$ Total Gate Charge $V_{GS} = 0 \text{ V to } 4.5 \text{ V}, \text{ I}_D = 15 \text{ V}, \text{ I}_D = 14.8 \text{ A}, \text{ T}, \text{ I}_D = 14.8 \text{ A}, \text{ I}_D$				Characteristics	Dynamic
C_{oss} Output Capacitance $V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ 7701020 C_{rss} Reverse Transfer Capacitance $f = 1 \text{ MHz}$ 75115 R_g Gate Resistance0.51.6Switching Characteristics $t_{d(on)}$ Turn-On Delay Time $V_{DD} = 15 \text{ V}, I_D = 14.8 \text{ A}, V_{GS} = 0 \text{ V}, R_{GEN} = 6 \Omega$ 1222 $t_{d(off)}$ Turn-Off Delay Time $V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$ 2540 t_{f} Fall Time3103042 $Q_{g(TOT)}$ Total Gate Charge $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{DD} = 15 \text{ V}$ 1419 Q_{gd} Gate to Drain "Miller" Charge $I_D = 14.8 \text{ A}$ 71419Drain-Source Diode Characteristics	2145 2855 pF	2145			•
CrssReverse Transfer Capacitance $T = T MHZ$ 75115RgGate Resistance0.51.6Switching Characteristics $t_{d(on)}$ Turn-On Delay Time $V_{DD} = 15 V, I_D = 14.8 A,$ 410 $t_{d(off)}$ Turn-Off Delay Time $V_{GS} = 10 V, R_{GEN} = 6 \Omega$ 2540 t_{f} Fall Time3103042 $Q_{g(TOT)}$ Total Gate Charge $V_{GS} = 0 V to 10 V$ $V_{DD} = 15 V$ 1419 Q_{gd} Gate to Drain "Miller" Charge $V_{GS} = 0 V to 4.5 V$ $I_D = 14.8 A$ 74Drain-Source Diode Characteristics	770 1020 pF	770			
RgGate Resistance 0.5 1.6 Switching Characteristics $t_{d(on)}$ Turn-On Delay Time $V_{DD} = 15 \text{ V}, I_D = 14.8 \text{ A}, V_{DD} = 15 \text{ V}, I_D = 14.8 \text{ A}, V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$ 12 22 $t_{d(off)}$ Turn-Off Delay Time $V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$ 25 40 $t_{d(off)}$ Turn-Off Delay Time $V_{GS} = 0 \text{ V}$ to $10 \text{ V}, V_{GS} = 0 \text{ V}$ to 10 V 30 42 $Q_{g(TOT)}$ Total Gate Charge $V_{GS} = 0 \text{ V}$ to $10 \text{ V}, V_{DD} = 15 \text{ V}$ 14 19 Q_{gs} Total Gate Charge $V_{GS} = 0 \text{ V}$ to $4.5 \text{ V}, V_{DD} = 15 \text{ V}$ 14 19 Q_{gd} Gate to Drain "Miller" Charge $V_{OS} = 0 \text{ V}, I_S = 14.8 \text{ A}$ 7 4 Drain-Source Diode Characteristics		75	t = 1 MHz		
Switching Characteristics $t_{d(on)}$ Turn-On Delay Time $V_{DD} = 15 \text{ V}, \text{ I}_D = 14.8 \text{ A},$ 1222 t_r Rise Time $V_{DD} = 15 \text{ V}, \text{ I}_D = 14.8 \text{ A},$ 410 $t_{d(off)}$ Turn-Off Delay Time $V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ 2540 t_f Fall Time310 $Q_g(TOT)$ Total Gate Charge $V_{GS} = 0 \text{ V to } 10 \text{ V}$ 3042 Q_{gs} Total Gate Charge $V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ $I_D = 15 \text{ V}$ 1419 Q_{gd} Gate to Drain "Miller" Charge $I_D = 14.8 \text{ A}$ 74Drain-Source Diode Characteristics	0.5 1.6 Ω	0.5		Gate Resistance	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		L		Characteristics	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12 22 ns	12			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			V		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				-	
$Q_{g(TOT)}$ Total Gate Charge $V_{GS} = 0 \ V \text{ to } 4.5 \ V$ $V_{DD} = 15 \ V$ 1419 Q_{gs} Total Gate Charge $I_D = 14.8 \ A$ 74 Q_{gd} Gate to Drain "Miller" Charge44Drain-Source Diode Characteristics			$V_{CC} = 0 V to 10 V$		4
Q _{gs} Total Gate Charge I _D = 14.8 Å 7 Q _{gd} Gate to Drain "Miller" Charge 4 Drain-Source Diode Characteristics Voc = 0 V. Ic = 14.8 Å Note 2) 0.84 1.2					Q _{g(TOT)}
Qgd Gate to Drain "Miller" Charge 4 Drain-Source Diode Characteristics Voc = 0 V. Ic = 14.8 A (Note 2) 0.84 1.2			$I_{D} = 14.8 \text{ A}$	0	Q
Drain-Source Diode Characteristics				-	
V _{CC} = 0 V, I _C = 14.8 A (Note 2) 0.84 1.2				·	×
$V_{GS} = 0.04$ (Note 2) 0.04 1.2	0.84 1.2	0.84	$V_{} = 0 V_{} = 14.8 A_{}$ (Note 2)		Drain-Sot
V_{SD} Source to Drain Diode Forward Voltage $V_{GS} = 0 V, I_S = 1.9 A$ (Note 2) 0.73 1.2	V			Source to Drain Diode Forward Voltage	V _{SD}
t Reverse Recovery Time 34 54				Reverse Recovery Time	t
t _{rr} Reverse Recovery Time Q _{rr} Reverse Recovery Charge I _F = 14.8 A, di/dt = 100 A/μs 15 24			I _F = 14.8 A, di/dt = 100 A/μs		
NOTES: 1: R_{0JA} is determined with the device mounted on a 1 in ² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0CA} is d the user's board design.	nteed by design while $R_{\theta CA}$ is determine	uaranteed by design wh	on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is gu	ined with the device mounted on a 1 in ² pad 2 oz copper pa	NOTES: 1: R _{0JA} is detern


00000


000 000


FDMC7680 N-Channel Power Trench[®] MOSFET

FDMC7680 N-Channel Power Trench[®] MOSFET

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™	FPS™	PDP SPM™	The Power Franchise [®]
AccuPower™	F-PFS™	Power-SPM™	the ®
Auto-SPM™	FRFET [®]	PowerTrench [®]	puwer
AX-CAP™*	Global Power Resource SM	PowerXS™	 franchise TinyBoost™
BitSiC [®]	Green FPS™	Programmable Active Droop™	
Build it Now™	Green FPS™ e-Series™	QFET®	TinyBuck™ TinyCalc™
CorePLUS™	G <i>max</i> ™	QS™	
CorePOWER™	GTO™	Quiet Series™	TinyLogic [®] TINYOPTO™
CROSSVOLT™	IntelliMAX™	RapidConfigure™	TinyPower™
CTL™	ISOPLANAR™	TM T	TinyPWM™
Current Transfer Logic™	Marking Small Speakers Sound Lo	ouder 🥥	TinyWire™
DEUXPEED®	and Better™	Saving our world, 1mW/W/kW at a time™	TranSiC [®]
Dual Cool™	MegaBuck™	SignalWise™	TriFault Detect™
EcoSPARK [®]	MICROCOUPLER™	SmartMax™	TRUECURRENT®*
EfficentMax™	MicroFET™	SMART START™	µSerDes™
ESBC™	MicroPak™	Solutions for Your Success™	µ0erbes
R	MicroPak2™	SPM®	μ
+	MillerDrive™	STEALTH™	/ SerDes
Fairchild [®]	MotionMax™	SuperFET®	UHC®
Fairchild Semiconductor [®]	Motion-SPM [™]	SuperSOT™-3	Ultra FRFET™
FACT Quiet Series™	mWSaver™	SuperSOT™-6	UniFET™
FACT [®]	OptoHiT™	SuperSOT™-8	VCX™
FAST [®]	OPTOLOGIC®	SupreMOS®	VisualMax™
FastvCore™	OPTOPLANAR®	SyncFET™	VoltagePlus™
FETBench™	®	Sync-Lock™	XS™
FlashWriter [®] *		SYSTEM ®*	
		GENERAL	

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.