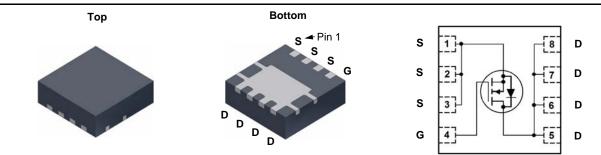


FDMC8321L N-Channel Power Trench[®] MOSFET 40 V, 49 A, 2.5 m Ω

Features

- Max $r_{DS(on)}$ = 2.5 m Ω at V_{GS} = 10 V, I_D = 22 A
- Max $r_{DS(on)}$ = 4.1 m Ω at V_{GS} = 4.5 V, I_D = 18 A
- Advanced Package and Silicon combination for low r_{DS(on)} and hign efficiency
- Next Generation enhanced body diode technology, engineered for soft recovery
- 100% UIL tested
- RoHS Compliant



General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency and to minimize switch node ringing of DC/DC converters using either synchronous or convertional switching PWM contollers. It has been optimized for low gate charge, low $r_{DS(on)}$, fast switching speed body diode reverse recovery performance.

Applications

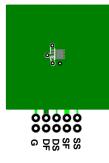
- Synchronous rectifier
- Load switch/Orring
- Motor switch

Power 33

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			40	V	
V _{GS}	Gate to Source V	/oltage			±20	V
	Drain Current	-Continuous (Package limi	t) T _C = 25 °C		49	
	-Continuous (Silicon limit) $T_{\rm C} = 25 ^{\circ}{\rm C}$				100	•
Ъ		-Continuous	T _A = 25 °C	(Note 1a)	22	Α
		-Pulsed			100	
E _{AS}	Single Pulse Ava	lanche Energy		(Note 3)	86	mJ
D	Power Dissipation		T _C = 25 °C		40	W
P _D	Power Dissipation		T _A = 25 °C	(Note 1a)	2.3	vv
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C	

Thermal Characteristics

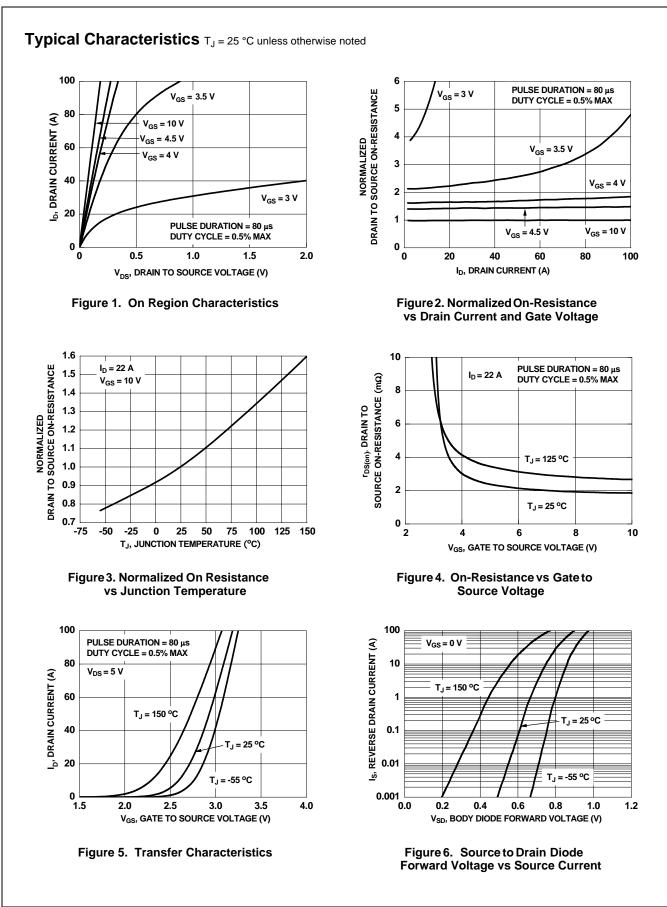

$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	(Note 1)	3.1	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1a)	53	C/VV

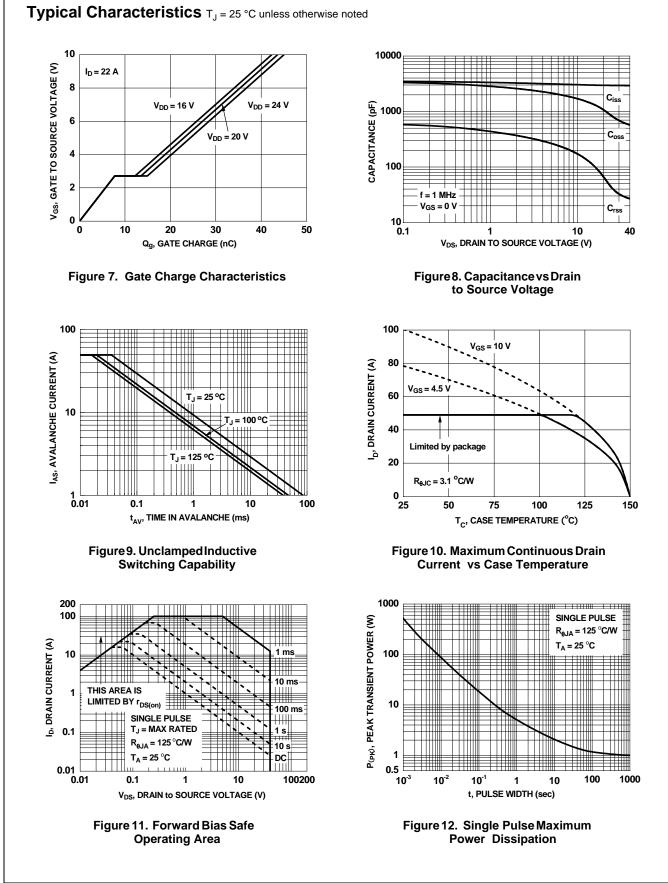
Package Marking and Ordering Information

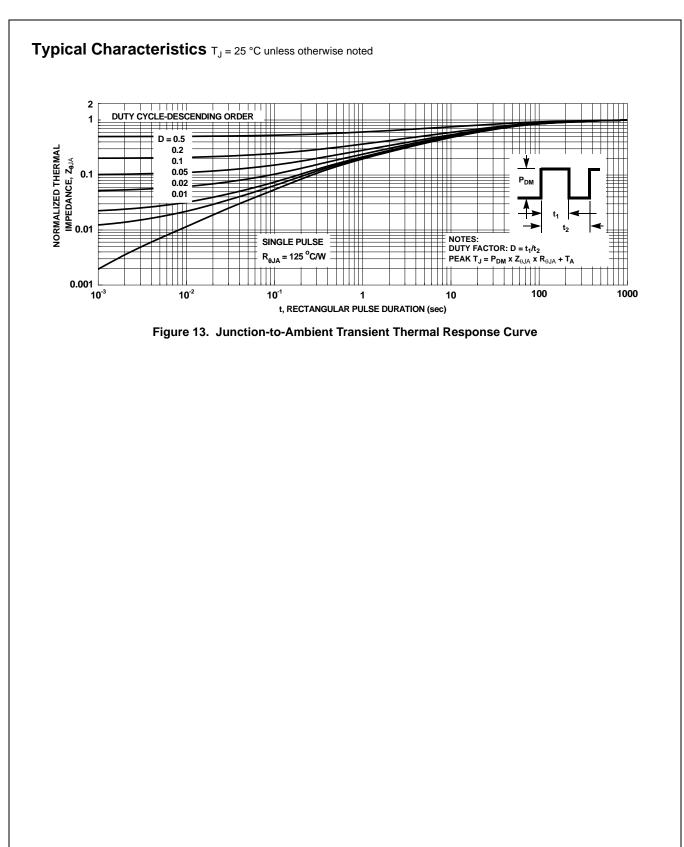
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMC8321L	FDMC8321L	Power33	13 "	12 mm	3000 units

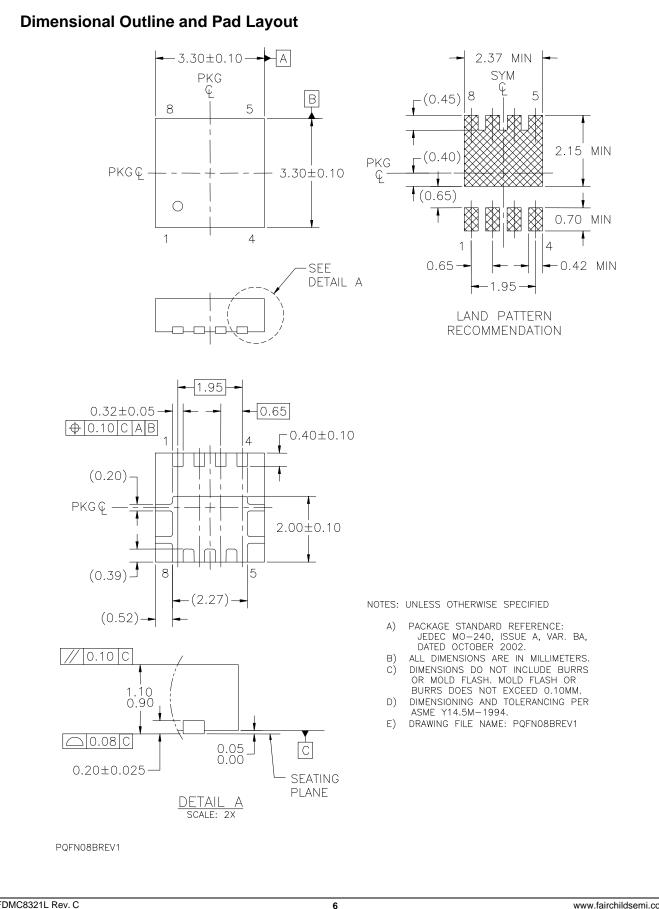
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units	
Off Chara	cteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V	40			V	
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, referenced to 25 °C		22		mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 32 V, V _{GS} = 0 V			1	μA	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA	
	cteristics				1	1	
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250 μA	1	1.7	3	V	
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C		-5		mV/°C	
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 22 A		1.9	2.5	mΩ	
		$V_{GS} = 4.5 \text{ V}, I_D = 18 \text{ A}$		2.7	4.1		
		V _{GS} = 10 V, I _D = 22 A, T _J = 125 °C		2.8	3.7		
9 _{FS}	Forward Transconductance	$V_{DS} = 5 V, I_{D} = 22 A$		114		S	
C _{iss} C _{oss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 20 V, V_{GS} = 0 V,$ f = 1 MHz		2930 1000 60	3900 1330 90	pF pF pF	
C _{rss}	Reverse Transfer Capacitance			60	90	pF	
R _g	Gate Resistance			0.7		Ω	
Switching	g Characteristics						
t _{d(on)}	Turn-On Delay Time			12	22	ns	
t _r	Rise Time	V _{DD} = 20 V, I _D = 22 A,		6.1	12	ns	
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		32	51	ns	
t _f	Fall Time			4.9	10	ns	
Q _{g(TOT)}	Total Gate Charge at 10 V			44	61	nC	
Q _{g(TOT)}	Total Gate Charge at 5 V			21	32	nC	
Q _{gs}	Total Gate Charge	$-V_{DD} = 20 \text{ V}, \text{ I}_{D} = 22 \text{ A}$		7.7		nC	
Q _{gd}	Gate to Drain "Miller" Charge			5.8		nC	
×	urce Diode Characteristics						
V _{SD}		$V_{GS} = 0 V, I_S = 2 A$ (Note 2)		0.69	1.2		
	Course to Drain Diade Fernvard Valtere					V	
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = 22 A$ (Note 2)		0.77	1.3	-	
V _{SD}	Reverse Recovery Time	$V_{GS} = 0 V, I_S = 22 A$ (Note 2) $-I_F = 22 A, di/dt = 100 A/\mu s$		0.77 41	1.3 65	ns	

1. R_{0JA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.


53 °C/W when mounted on a 1 in² pad of 2 oz copper


125 °C/W when mounted on a minimum pad of 2 oz copper


2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%.


3.Starting T_J = 25 °C; N-ch: L = 0.3 mH, I_{AS} = 24 A, V_{DD} = 36 V, V_{GS} = 10 V.

FDMC8321L N-Channel PowerTrench[®] MOSFET

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

	EDSTM		The Dower Frenchise [®]
2Cool TM AccuPower TM Auto-SPMT ^M AX-CAP ^{TM*} BitSiC [®] Build it Now TM CorePLUS TM CorePOWER TM CROSSVOLT TM CTL TM CUTENT Transfer Logic TM DEUXPEED [®] Dual Cool TM EcoSPARK [®] EfficentMax TM ESBC TM CTC TM CTC TM EsBC TM Fairchild [®] Fairchild [®] Fairchild [®] Fairchild [®] Fairchild Semiconductor [®] FACT Quiet Series TM FACT [®] FastvCore TM FETBench TM FlashWriter [®] *	FPSTM F-PFSTM FRFET® Global Power Resource SM Green FPSTM Green FPSTM e-SeriesTM GmaxTM GTOTM IntelliMAXTM ISOPLANARTM Marking Small Speakers Sound Louder and BetterTM Marking Small Speakers Sound Louder and BetterTM MicroPetata MicroPak2TM MicroPak2TM MicroPak2TM MillerDriveTM MotionMaxTM Motion-SPMTM MotionMaxTM Motion-SPMTM MotionCOIC® OPTOPLANAR®	PowerTrench [®] PowerXS TM Programmable Active Droop TM QFET [®] QS TM Quiet Series TM RapidConfigure TM $\stackrel{\bullet}{\longrightarrow}$ TM $\stackrel{\bullet}{\longrightarrow}$ TM Saving our world, 1mW/W/kW at a time TM SignalWise TM SmartMax TM SMART START TM SubartMax TM SMART START TM SubartMax TM STEALTH TM SuperFET [®] SuperSOT TM -6 SuperSOT TM -6 SuperSOT TM -8 SupreMOS [®] SyncFET TM Sync-Lock TM $\stackrel{\bullet}{\blacksquare}$	The Power Franchise [®] The Power Franchise [®] Pfranchise TinyBoost™ TinyBoost™ TinyDogic [®] TINYOPTO™ TinyPOwer™ TinyPWMT™ TinyWire™ TranSiC [®] Tifault Detect™ TRUECURRENT [®] * µSerDes™ Utra FRFET™ UniFET™ VCX™ VisualMax™ VotagePlus™ XS™
*Trademarks of System General C	Corporation, used under license by Fairchil	d Semiconductor.	
RELIABILITY, FUNCTION, OR DE PRODUCT OR CIRCUIT DESCRIB THESE SPECIFICATIONS DO NO THEREIN, WHICH COVERS THESE LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NO	ESIGN. FAIRCHILD DOES NOT ASSUM ED HEREIN; NEITHER DOES IT CONVEY T EXPAND THE TERMS OF FAIRCHILD'S E PRODUCTS.	ES WITHOUT FURTHER NOTICE TO ANY I E ANY LIABILITY ARISING OUT OF THE ANY LICENSE UNDER ITS PATENT RIGHT S WORLDWIDE TERMS AND CONDITIONS	APPLICATION OR USE OF ANY 'S, NOR THE RIGHTS OF OTHERS. , SPECIFICALLY THE WARRANTY

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or 2. system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or form Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Re