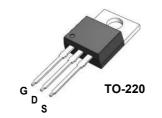
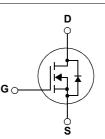
September 2012

FDP030N06B_F102 N-Channel PowerTrench[®] MOSFET 60V, 195A, 3.1mΩ

Features


- $R_{DS(on)}$ = 2.67m Ω (Typ.) @ V_{GS} = 10V, I_D = 100A
- Low FOM R_{DS(on)}*Q_G
- Low reverse recovery charge, Q_{rr}
- Soft reverse recovery body diode
- · Enables highly efficiency in synchronous rectification
- Fast Switching Speed
- 100% UIL Tested
- RoHS Compliant


Description

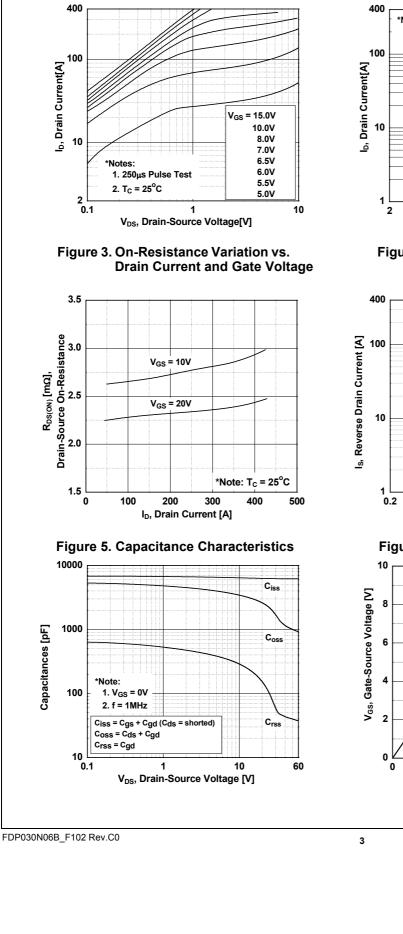
This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench® process that has been tailored to minimize the on-state resistance while maintaining superior switching performance.

Application

- Synchronous Rectification for ATX / Server / Telecom PSU
- Battery Protection Circuit
- DC motor drives and Uninterruptible Power Supplies

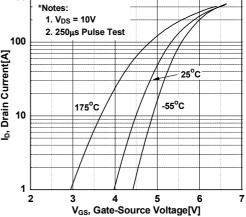
MOSFET Maximum Ratings T_C = 25°C unless otherwise noted*

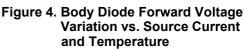
Symbol		Parameter		FDP030N06B_F102	Units
V _{DSS}	Drain to Source Voltage		60	V	
V _{GSS}	Gate to Source Voltage	Voltage		±20	V
ID		- Continuous (T _C = 25°C, Silic	ntinuous (T _C = 25 ^o C, Silicon Limited)		A
	Drain Current	- Continuous (T _C = 100 ^o C, Sil	- Continuous (T _C = 100 ^o C, Silicon Limited)		
		- Continuous (T _C = 25 ^o C, Pac	kage Limited)	120	1
I _{DM}	Drain Current	- Pulsed	(Note 1)	780	А
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		600	mJ	
dv/dt	Peak Diode Recovery dv/dt (Note 3)		6.0	V/ns	
P _D	David Dia dia atian	(T _C = 25°C)	$(T_{\rm C} = 25^{\rm o}{\rm C})$		W
	Power Dissipation	- Derate above 25°C		1.37	W/ºC
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +175	°C	
TL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds		300	°C	


* Package limitation current is 120A.

Thermal Characteristics

Symbol	Parameter	FDP030N06B_F102	Units
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max	0.73	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient, Max	62.5	°C/W


D300N06B_F102 istics T _C = 25°C unle Parameter Breakdown Voltage age Temperature age Temperature age Drain Current eakage Current Voltage Source On Resistance ce ance er Capacitance Output Capacitance ge at 10V Gate Charge Ailler" Charge Datage	$I_{D} = 250\mu$ $I_{D} = 250\mu$ $V_{DS} = 48$ $V_{GS} = \pm 2$ $V_{GS} = V_{D}$ $V_{GS} = 10$ $V_{DS} = 10$ $V_{DS} = 30$ $f = 1MHz$ $V_{DS} = 30$ $V_{DS} = 30$	noted Test Conditions LA, $V_{GS} = 0V$ LA, Referenced to 25 $V, V_{GS} = 0V$ $20V, V_{DS} = 0V$ $20V, V_{DS} = 0V$ $D_{DS}, I_D = 250\mu A$ $DV, I_D = 100A$ $DV, V_{GS} = 0V$ $DV, V_{GS} = 0V$ $DV, V_{GS} = 0V$ $DV, V_{GS} = 0V$ $DV, V_{GS} = 0V$		Min. 60 - - - - - - - - - - - - - -	Typ. - 0.03 - - 2.67 206 6035 1685 55 2619 76	50 Max. - - 1 ±100 4 3.1 - 8030 2240 - - 99	Units V V/°C μA nA N N S S PF pF pF pF nC
Parameter Parameter Breakdown Voltage age Temperature ge Drain Current eakage Current Voltage Source On Resistance conductance S ce ance er Capacitance Output Capacitance ge at 10V Gate Charge Ailler" Charge	$I_{D} = 250\mu$ $I_{D} = 250\mu$ $V_{DS} = 48$ $V_{GS} = \pm 2$ $V_{GS} = V_{D}$ $V_{GS} = 10$ $V_{DS} = 10$ $V_{DS} = 30$ $f = 1MHz$ $V_{DS} = 30$ $V_{DS} = 30$	Test Conditions LA, $V_{GS} = 0V$ LA, Referenced to 25 LV, $V_{GS} = 0V$ 20V, $V_{DS} = 0V$ 20V, $V_{DS} = 0V$ 20V, $I_D = 100A$ 20V, $V_{GS} = 0V$		60 - - 2 - - - - - - - - - - -	- 0.03 - - 2.67 206 6035 1685 55 2619	- - 1 ±100 4 3.1 - 8030 2240 - -	V V/°C μA nA V mΩ S pF pF pF pF pF pF pF
Parameter Parameter Breakdown Voltage age Temperature ge Drain Current eakage Current Voltage Source On Resistance conductance S ce ance er Capacitance Output Capacitance ge at 10V Gate Charge Ailler" Charge	$I_{D} = 250\mu$ $I_{D} = 250\mu$ $V_{DS} = 48$ $V_{GS} = \pm 2$ $V_{GS} = V_{D}$ $V_{GS} = 10$ $V_{DS} = 10$ $V_{DS} = 30$ $f = 1MHz$ $V_{DS} = 30$ $V_{DS} = 30$	Test Conditions LA, $V_{GS} = 0V$ LA, Referenced to 25 LV, $V_{GS} = 0V$ 20V, $V_{DS} = 0V$ 20V, $V_{DS} = 0V$ 20V, $I_D = 100A$ 20V, $V_{GS} = 0V$		60 - - 2 - - - - - - - - - - -	- 0.03 - - 2.67 206 6035 1685 55 2619	- - 1 ±100 4 3.1 - 8030 2240 - -	V V/°C μA nA V mΩ S pF pF pF pF pF pF pF
age Temperature ge Drain Current eakage Current Voltage Source On Resistance conductance s ce ance er Capacitance Output Capacitance ge at 10V Gate Charge Ailler" Charge	$V_{DS} = 48$ $V_{GS} = 48$ $V_{GS} = 48$ $V_{GS} = 48$ $V_{GS} = 10$ $V_{DS} = 10$ $V_{DS} = 10$ $V_{DS} = 10$ $V_{DS} = 30$ $f = 1MHz$ $V_{DS} = 30$ $V_{DS} = 30$	V_{A} , Referenced to 25 V_{V} , $V_{GS} = 0V$ V_{OV} , $V_{DS} = 0V$ D_{DS} , $I_D = 250 \mu A$ D_{V} , $I_D = 100A$ D_{V} , $V_{GS} = 0V$ D_{V} , $V_{GS} = 0V$ D_{V} , $V_{GS} = 0V$ D_{V} , $I_D = 100A$	5°C	- - - - - - - - - - - - -	0.03 - - 2.67 206 6035 1685 55 2619	- 1 ±100 4 3.1 - 8030 2240 - -	V/°C μA nA V mΩ S pF pF pF pF pF pF
age Temperature ge Drain Current eakage Current Voltage Source On Resistance conductance s ce ance er Capacitance Output Capacitance ge at 10V Gate Charge Ailler" Charge	$V_{DS} = 48$ $V_{GS} = 48$ $V_{GS} = 48$ $V_{GS} = 48$ $V_{GS} = 10$ $V_{DS} = 10$ $V_{DS} = 10$ $V_{DS} = 10$ $V_{DS} = 30$ $f = 1MHz$ $V_{DS} = 30$ $V_{DS} = 30$	V_{A} , Referenced to 25 V_{V} , $V_{GS} = 0V$ V_{OV} , $V_{DS} = 0V$ D_{DS} , $I_D = 250 \mu A$ D_{V} , $I_D = 100A$ D_{V} , $V_{GS} = 0V$ D_{V} , $V_{GS} = 0V$ D_{V} , $V_{GS} = 0V$ D_{V} , $I_D = 100A$	5°C	- - - - - - - - - - - - -	0.03 - - 2.67 206 6035 1685 55 2619	- 1 ±100 4 3.1 - 8030 2240 - -	V/°C μA nA V mΩ S pF pF pF pF pF pF
age Temperature ge Drain Current eakage Current Voltage Source On Resistance conductance s ce ance er Capacitance Output Capacitance ge at 10V Gate Charge Ailler" Charge	$V_{DS} = 48$ $V_{GS} = 48$ $V_{GS} = 48$ $V_{GS} = 48$ $V_{GS} = 10$ $V_{DS} = 10$ $V_{DS} = 10$ $V_{DS} = 10$ $V_{DS} = 30$ $f = 1MHz$ $V_{DS} = 30$ $V_{DS} = 30$	V_{A} , Referenced to 25 V_{V} , $V_{GS} = 0V$ V_{OV} , $V_{DS} = 0V$ D_{DS} , $I_D = 250 \mu A$ D_{V} , $I_D = 100A$ D_{V} , $V_{GS} = 0V$ D_{V} , $V_{GS} = 0V$ D_{V} , $V_{GS} = 0V$ D_{V} , $I_D = 100A$	5°C	- - - - - - - - - - - -	- - 2.67 206 6035 1685 55 2619	1 ±100 4 3.1 - 8030 2240 - -	μΑ nA V mΩ S PF pF pF
Voltage Source On Resistance conductance S ce ance er Capacitance Output Capacitance ge at 10V Gate Charge Ailler" Charge	$V_{DS} = 48$ $V_{GS} = \pm 2$ $V_{GS} = V_{I}$ $V_{GS} = 10$ $V_{DS} = 10$ $V_{DS} = 10$ $V_{DS} = 30$ $f = 1MHz$ $V_{DS} = 30$ $V_{DS} = 30$	$BV, V_{GS} = 0V$ $20V, V_{DS} = 0V$ $DS, I_D = 250 \mu A$ $DV, I_D = 100A$ $DV, I_D = 100A$ $DV, V_{GS} = 0V$ $DV, V_{GS} = 0V$ $DV, V_{GS} = 0V$ $DV, I_D = 100A$		- - - - - - - - - - - -	- - 2.67 206 6035 1685 55 2619	1 ±100 4 3.1 - 8030 2240 - -	μΑ nA V mΩ S PF pF pF
Voltage Source On Resistance conductance S ce ance er Capacitance Output Capacitance ge at 10V Gate Charge Ailler" Charge	$V_{GS} = \pm 2$ $V_{GS} = V_{I}$ $V_{GS} = 10$ $V_{DS} = 10$ $V_{DS} = 30$ $f = 1MHz$ $V_{DS} = 30$ $V_{DS} = 30$	$P_{DOV}, V_{DS} = 0V$ $P_{DS}, I_D = 250 \mu A$ $P_{DV}, I_D = 100A$ $P_{DV}, V_{GS} = 100A$ $P_{DV}, V_{GS} = 0V$ $P_{DV}, V_{GS} = 0V$ $P_{DV}, V_{GS} = 0V$ $P_{DV}, I_D = 100A$		- 2 - - - - - - - -	- 2.67 206 6035 1685 55 2619	±100 4 3.1 - 8030 2240 - -	nA V mΩ S PF pF pF
Voltage Source On Resistance conductance S ce ance er Capacitance Output Capacitance ge at 10V Gate Charge Ailler" Charge	$V_{GS} = V_{I}$ $V_{GS} = 10$ $V_{DS} = 10$ $V_{DS} = 30$ $f = 1MHz$ $V_{DS} = 30$ $V_{DS} = 30$	$_{DS}$, $I_D = 250 \mu A$ $_{DV}$, $I_D = 100A$ $_{DV}$, $I_D = 100A$ $_{DV}$, $V_{GS} = 0V$ $_{Z}$ $_{DV}$, $V_{GS} = 0V$ $_{DV}$, $V_{GS} = 0V$ $_{DV}$, $V_{GS} = 0V$		2 - - - - - - - -	- 2.67 206 6035 1685 55 2619	4 3.1 - 8030 2240 - -	V mΩ S pF pF pF
Source On Resistance conductance S ce ance er Capacitance Output Capacitance ge at 10V Gate Charge Ailler" Charge	$V_{GS} = 10$ $V_{DS} = 10$ $V_{DS} = 30$ $f = 1MHz$ $V_{DS} = 30$ $V_{DS} = 30$ $V_{DS} = 30$	$V, I_D = 100A$ $V, I_D = 100A$ $V, V_{ID} = 100A$ $V, V_{GS} = 0V$ $V, V_{GS} = 0V$ $V, V_{GS} = 0V$ $V, I_D = 100A$		- - - - - - - - -	2.67 206 6035 1685 55 2619	3.1 - 8030 2240 - -	mΩ S pF pF pF
Source On Resistance conductance S ce ance er Capacitance Output Capacitance ge at 10V Gate Charge Ailler" Charge	$V_{GS} = 10$ $V_{DS} = 10$ $V_{DS} = 30$ $f = 1MHz$ $V_{DS} = 30$ $V_{DS} = 30$ $V_{DS} = 30$	$V, I_D = 100A$ $V, I_D = 100A$ $V, V_{ID} = 100A$ $V, V_{GS} = 0V$ $V, V_{GS} = 0V$ $V, V_{GS} = 0V$ $V, I_D = 100A$		- - - - - - - - -	2.67 206 6035 1685 55 2619	3.1 - 8030 2240 - -	mΩ S pF pF pF
ce ance er Capacitance Output Capacitance ge at 10V Gate Charge Ailler" Charge	$V_{DS} = 10$ $V_{DS} = 30$ f = 1MHz $V_{DS} = 30$ $V_{DS} = 30$	$VV, I_D = 100A$ $VV, V_{GS} = 0V$ Z $VV, V_{GS} = 0V$ $VV, I_D = 100A$		- - - -	206 6035 1685 55 2619	- 8030 2240 - -	S pF pF pF pF
s ce ance er Capacitance Output Capacitance ge at 10V Gate Charge Ailler" Charge	$V_{DS} = 10$ $V_{DS} = 30$ f = 1MHz $V_{DS} = 30$ $V_{DS} = 30$	$VV, I_D = 100A$ $VV, V_{GS} = 0V$ Z $VV, V_{GS} = 0V$ $VV, I_D = 100A$		- - - -	6035 1685 55 2619	2240 - -	pF pF pF
ce ance er Capacitance Output Capacitance ge at 10V Gate Charge Ailler" Charge	$f = 1 MHz$ $V_{DS} = 30$ $V_{DS} = 30$	2 DV, V _{GS} = 0V DV, I _D = 100A		- - - -	1685 55 2619	2240 - -	pF pF pF
ce ance er Capacitance Output Capacitance ge at 10V Gate Charge Ailler" Charge	$f = 1 MHz$ $V_{DS} = 30$ $V_{DS} = 30$	2 DV, V _{GS} = 0V DV, I _D = 100A		- - - -	1685 55 2619	2240 - -	pF pF pF
ance er Capacitance Output Capacitance ge at 10V Gate Charge Ailler" Charge	$f = 1 MHz$ $V_{DS} = 30$ $V_{DS} = 30$	2 DV, V _{GS} = 0V DV, I _D = 100A		- - - -	1685 55 2619	2240 - -	pF pF pF
er Capacitance Output Capacitance ge at 10V Gate Charge Ailler" Charge	$f = 1 MHz$ $V_{DS} = 30$ $V_{DS} = 30$	2 DV, V _{GS} = 0V DV, I _D = 100A		-	55 2619	-	pF pF
Output Capacitance ge at 10V Gate Charge Ailler" Charge	V _{DS} = 30)V, I _D = 100A		-	2619	-	pF
ge at 10V Gate Charge ⁄Iiller" Charge	V _{DS} = 30)V, I _D = 100A		-			
Gate Charge /iller" Charge			_	-	70	99	
Ailler" Charge				-	29	-	nC
		V _{GS} = 10V (Note 4)		_	12	-	nC
				-	5.2		V
Jaige	$V_{\rm DO} = 30$	0V, V _{GS} = 0V	(Note 4)	_	92.4		nC
	105 00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			02.1	<u> </u>	
CS							
Time				-	32	74	ns
me		V_{DD} = 30V, I_D = 100A V_{GS} = 10V, R_{GEN} = 4.7 Ω		-	33	76	ns
Time	$v_{GS} = 10$			-	56	122	ns
ne			(Note 4)	-	23	56	ns
es Resistance (G-S)	Drain Op	en, f = 1MHz		-	2.0	-	Ω
aracteristics							
	ode Forward	Current		-	-	195*	Α
d Drain to Source Diode	Forward Curr	rent		-	-	780	Α
Diode Forward Voltage	V _{GS} = 0V	/, I _{SD} = 100A		-	-	1.25	V
ery Time	$V_{GS} = 0$	/, I _{SD} = 100A		-	71	-	ns
ery Charge				-	78	-	nC
	Fime me Fime Fime Pas Resistance (G-S) Aracteristics Inuous Drain to Source Diode Diode Forward Voltage Pry Time Pary Charge In maximum junction temperature SS, Starting T _J = 25°C	Fime $V_{DD} = 30$ me $V_{GS} = 10$ ne $P_{GS} = 10$ es Resistance (G-S) Drain Op aracteristics Drain to Source Diode Forward Curr nuous Drain to Source Diode Forward Curr Diode Forward Voltage Diode Forward Voltage $V_{GS} = 0$ ery Time $V_{GS} = 0$ ery Charge $dI_F/dt = 7$	Fime $V_{DD} = 30V, I_D = 100A$ me $V_{GS} = 10V, R_{GEN} = 4.7\Omega$ ne $P_{GS} = 10V, R_{GEN} = 4.7\Omega$ he $P_{GS} = 0V, I_{SD} = 100H$ he $P_{GS} = 0V, I_{SD} = 100A$ he $V_{GS} = 0V, I_{SD} = 100A$ hery Time $V_{GS} = 0V, I_{SD} = 100A$ hery Charge $H_F/dt = 100A/\mu s$ Her maximum junction temperature $P_{SS}, Starting T_J = 25^{\circ}C$	Fime $V_{DD} = 30V, I_D = 100A$ me $V_{GS} = 10V, R_{GEN} = 4.7\Omega$ ne (Note 4) as Resistance (G-S) Drain Open, f = 1MHz aracteristics nuous Drain to Source Diode Forward Current d Drain to Source Diode Forward Current Diode Forward Voltage $V_{GS} = 0V, I_{SD} = 100A$ ery Time $V_{GS} = 0V, I_{SD} = 100A$ ery Charge $dI_F/dt = 100A/\mu s$	Filme - me V_{DD} = 30V, I_D = 100A Filme V_{GS} = 10V, R_{GEN} = 4.7Ω ne (Note 4) es Resistance (G-S) Drain Open, f = 1MHz practeristics nuous Drain to Source Diode Forward Current d Drain to Source Diode Forward Current Diode Forward Voltage V _{GS} = 0V, I _{SD} = 100A erry Time V _{GS} = 0V, I _{SD} = 100A erry Time V _{GS} = 0V, I _{SD} = 100A erry Charge dI _F /dt = 100A/µs	$\begin{tabular}{ c c c c c c } \hline Filme & V_{DD} = 30V, I_D = 100A & & & & & & & & & & & & & & & & & & $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $



Typical Performance Characteristics

Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics Figure 2. Transfer Characteristics Votes: 1. V_{DS} = 10V 2. 250µS Pulse Test

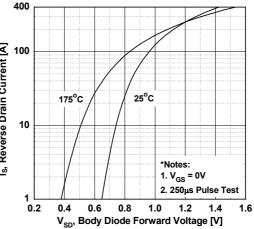
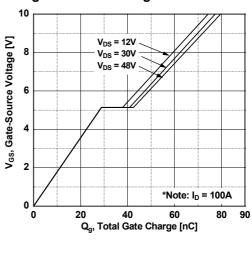
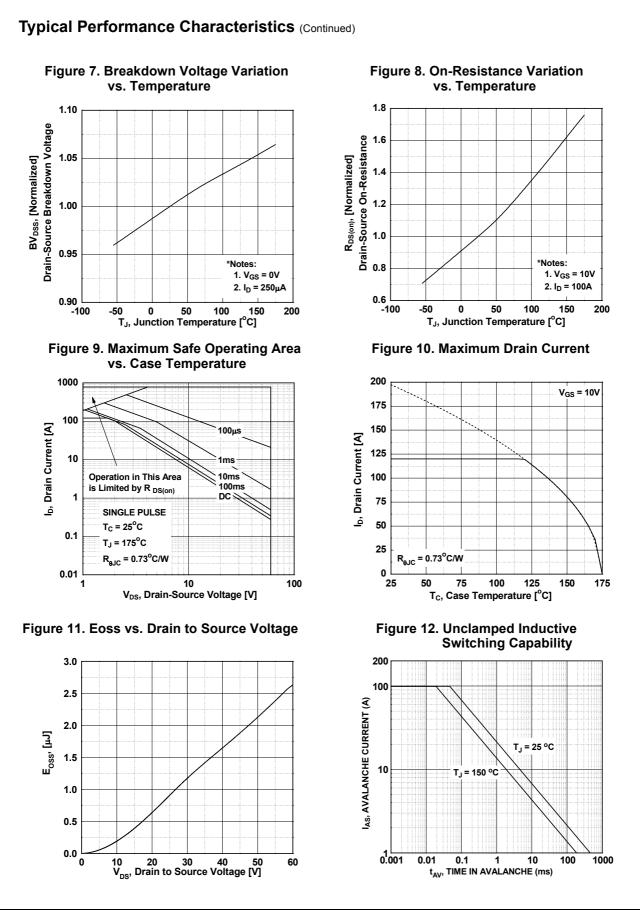
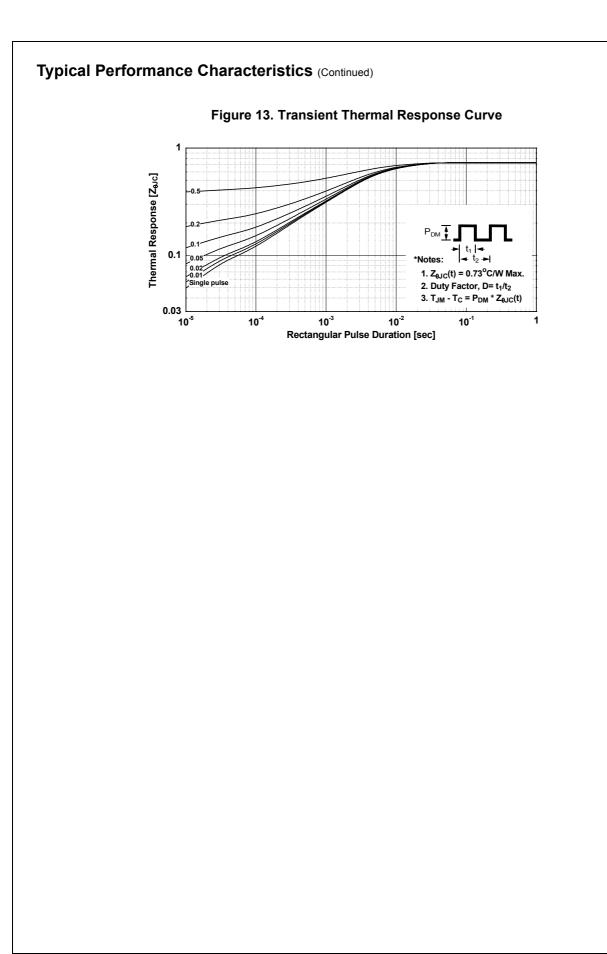
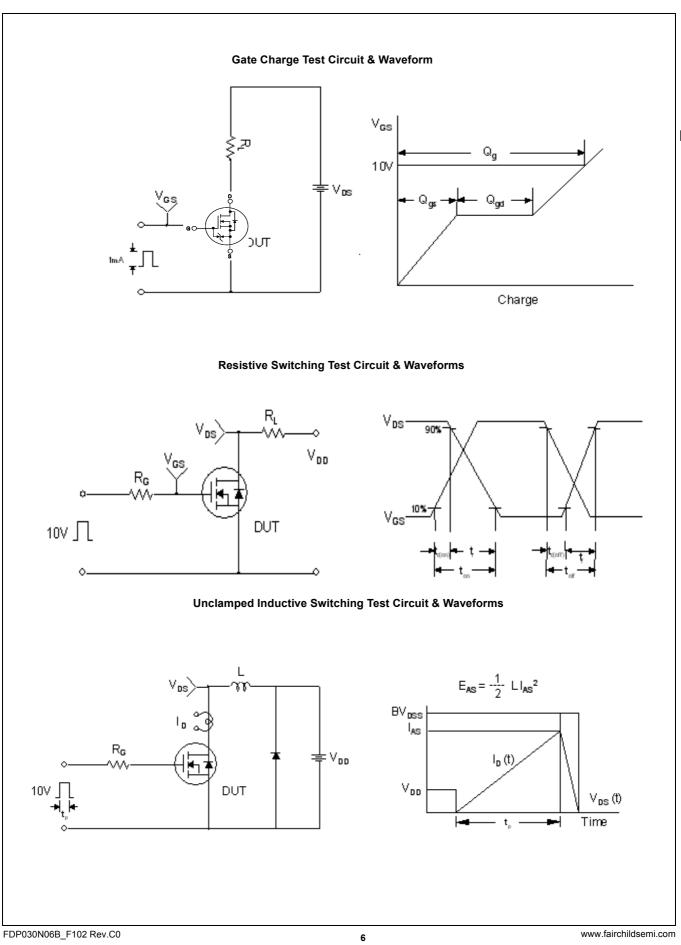
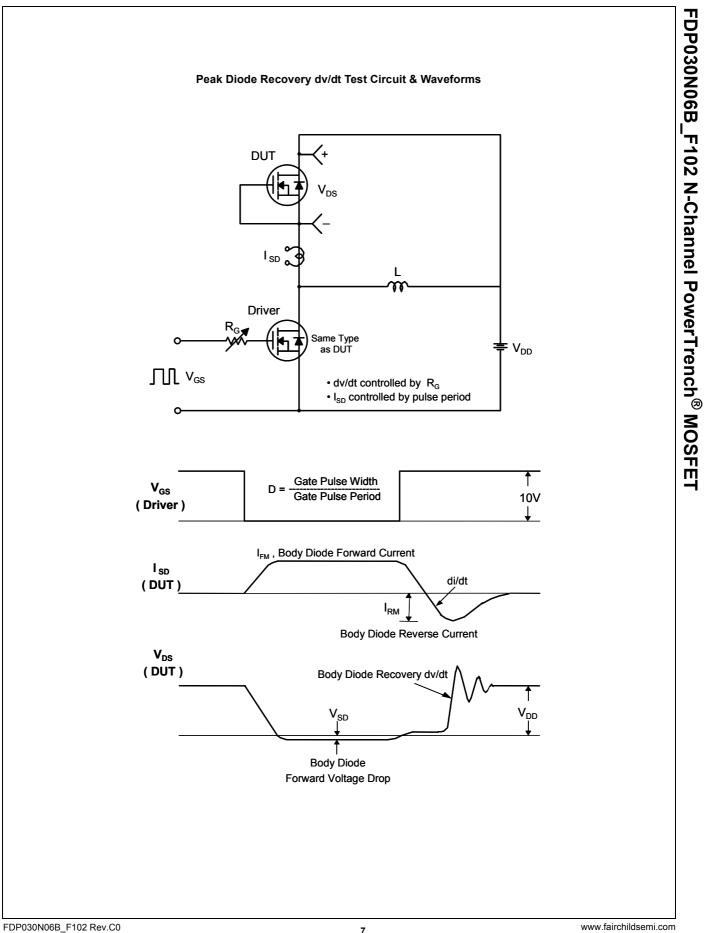
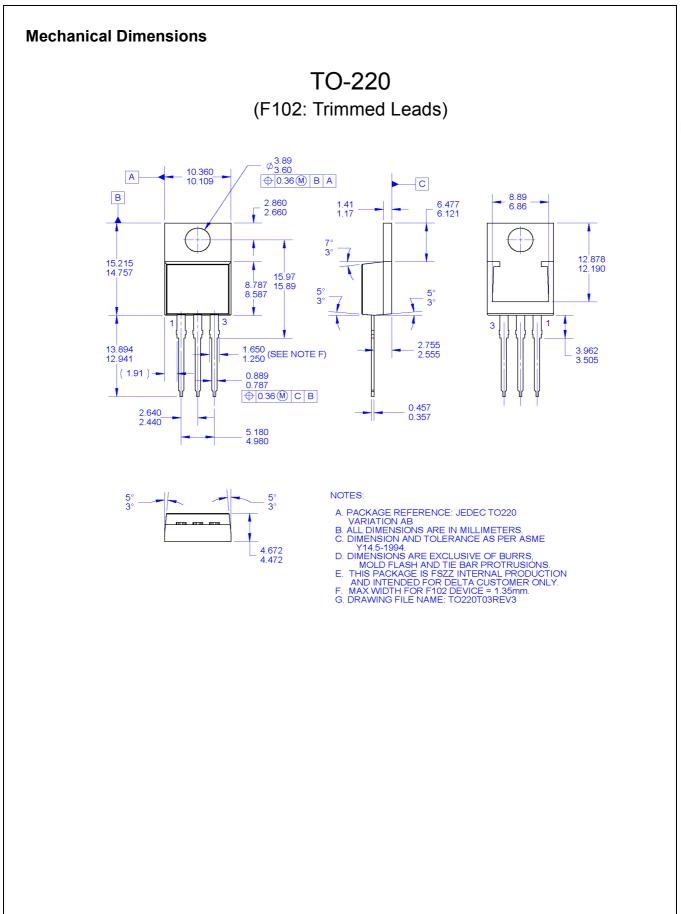






Figure 6. Gate Charge Characteristics





FDP030N06B_F102 N-Channel PowerTrench[®] MOSFET

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™
AccuPower™
AX-CAP™*
BitSiC [®]
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED®
Dual Cool™_
EcoSPARK [®]
EfficentMax™
ESBC™
r r
+ ~
R

Fairchild® Fairchild Semiconductor® FACT Quiet Series[™] FACT[®] FAST[®] FastvCore™ FETBench™ FlashWriter[®] * FPS™

Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Louder and Better[™] MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Motion-SPM™ mWSaver™ OptoHiT™ **OPTOLOGIC® OPTOPLANAR®**

Global Power ResourceSM

Green FPS™ e-Series™

F-PFS™

FRFET®

Green Bridge™

Green FPS[™]

PowerTrench[®] PowerXS™ Programmable Active Droop™ OFET QS™ Quiet Series™ RapidConfigure[™] тм Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM® STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS®

The Power Franchise[®] wer p franchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC® TriFault Detect™ TRUECURRENT®* uSerDes™ UHC® Ultra FRFET™ UniFET™ VCX™

VisualMax™ VoltagePlus™ XST

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

SyncFET™

Sync-Lock™

GENERAL ®*

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2 A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 161

[:]DP030N06B_F102 N-Channel PowerTrench[®] MOSFE[:]