

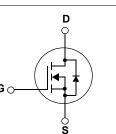
FDP12N50F / FDPF12N50FT N-Channel MOSFET 500V, 11.5A, 0.7Ω

Features

- R_{DS(on)} = 0.59Ω (Typ.)@ V_{GS} = 10V, I_D = 6A
- Low gate charge (Typ. 21nC)
- Low C_{rss} (Typ. 11pF)
- · Fast switching
- 100% avalanche tested
- · Improve dv/dt capability

GDS

RoHS compliant



GDS

Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advance technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficient switching mode power supplies and active power factor correction.

MOSFET Maximum Ratings $T_C = 25^{\circ}C$ unless otherwise noted

TO-220

FDP Series

Symbol		FDP12N50F	FDPF12N50FT	Units			
V _{DSS}	Drain to Source Voltage		V				
V _{GSS}	Gate to Source Voltage			:	V		
ID	Ducin Current	-Continuous (T _C = 25 ^o C)		11.5	11.5*	•	
	DrainCurrent	-Continuous (T _C = 100 ^o C)		6.9	6.9*	A	
I _{DM}	DrainCurrent	- Pulsed	46	46*	Α		
E _{AS}	Single Pulsed Avalanche Energy (N			456		mJ	
I _{AR}	Avalanche Current	(Note 1)	11.5		А		
E _{AR}	Repetitive Avalanche Energy		(Note 1)	16.5		mJ	
dv/dt	Peak Diode Recovery dv/dt		(Note 3)	20		V/ns	
P _D	Dower Dissignation	(T _C = 25°C)		165	42	W	
	Power Dissipation	- Derate above 25°C		1.33	0.33	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150		°C	
TL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			300		°C	
*Drain current li	mited by maximum junction tempera	ture			1		

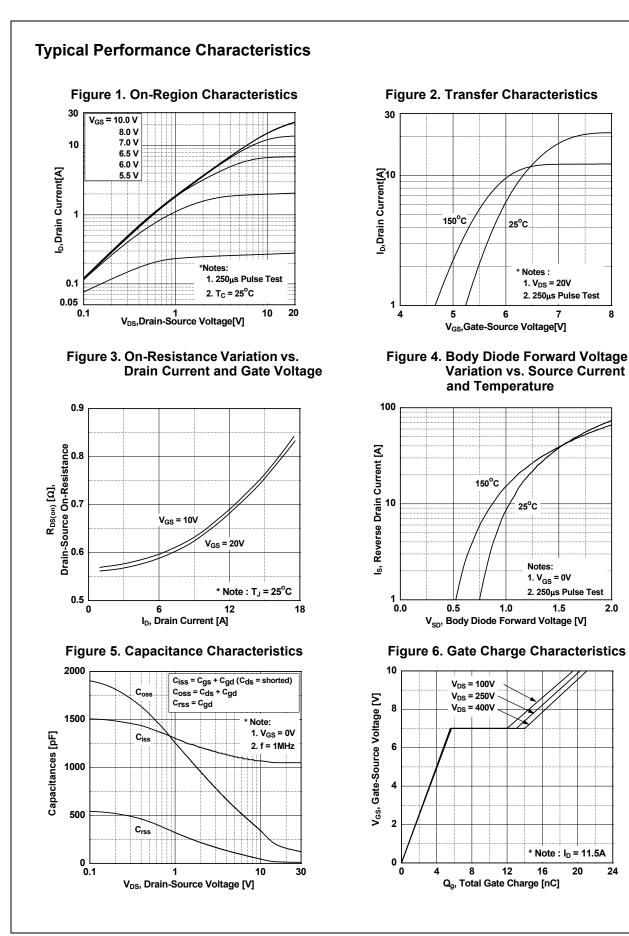
TO-220F

FDPF Series

Thermal Characteristics

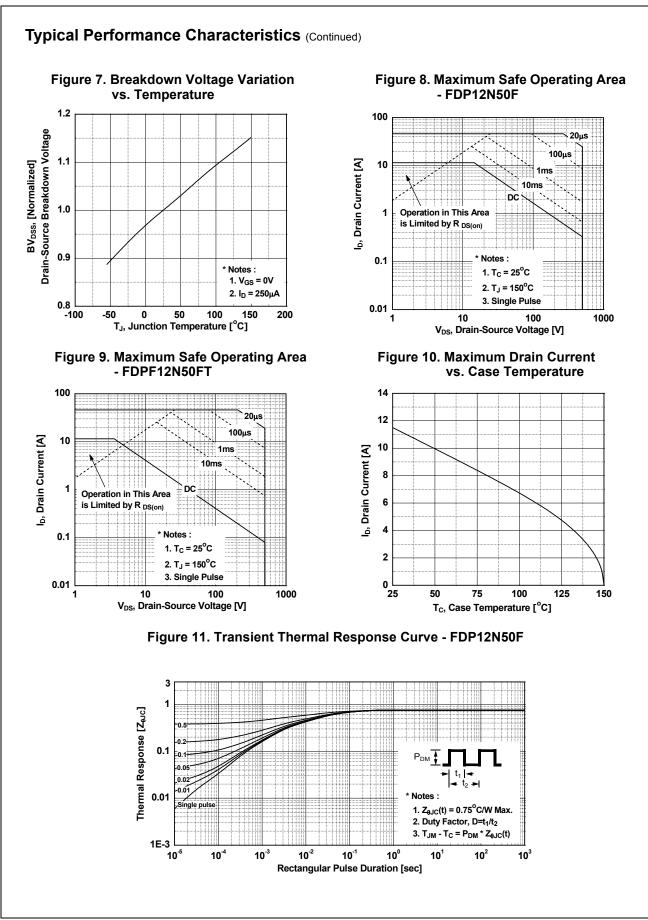
Symbol	Parameter	FDP12N50F	FDPF12N50FT	Units
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	0.75	3.0	
$R_{\theta CS}$	Thermal Resistance, Case to Sink Typ.	0.5	-	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient	62.5	62.5	

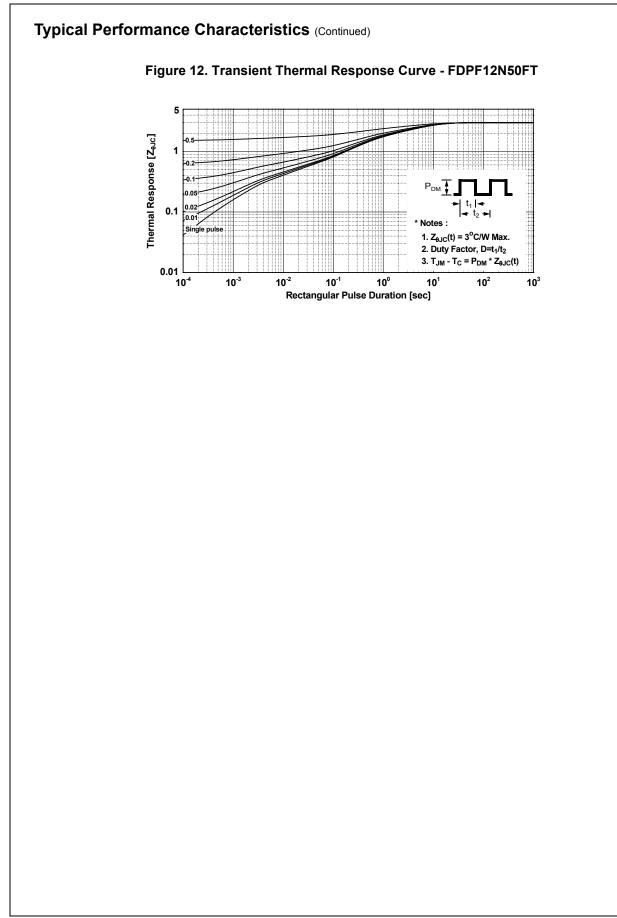
November 2011 UniFET^M

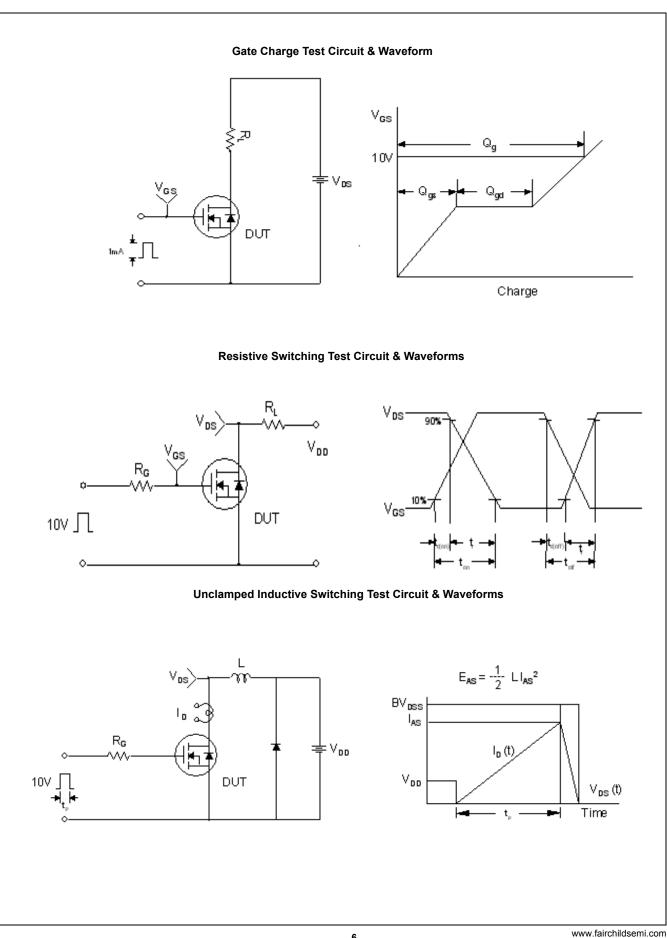

Device Marking Device		Device	Packaç	ge	Reel Size	Таре	Width		Quantit	у
FDP12N50F FDP12N50F TO-		TO-22	20	-		- 50				
FDPF12N	FDPF12N50FT FDPF12N50FT TO-2		TO-220	0F -			- 50		50	
Electrica	l Char	acteristics								
Symbol		Parameter		Test Conditions			Min.	Тур.	Max.	Units
Off Charac	teristic	S								
3V _{DSS}	Drain to Source Breakdown Voltage			I _D = 250	$I_D = 250 \mu A, V_{GS} = 0V, T_J = 25^{\circ}C$			-	-	V
ΔBV _{DSS} ′ΔT _J	Breakdown Voltage Temperature		$I_D = 250 \mu A$, Referenced to $25^{\circ}C$			-	0.5	-	V/ºC	
500	Zero G	Zara Cata Valtaga Drain Current			V _{DS} = 500V, V _{GS} = 0V			-	10	μA
DSS	Zero Gate Voltage Drain Current		V _{DS} = 400V, T _C = 125 ^o C			-	-	100	μη	
GSS	Gate to Body Leakage Current			$V_{GS} = \pm 30V, V_{DS} = 0V$			-	-	±100	nA
On Charac	teristic	S								
V _{GS(th)}	Gate T	e Threshold Voltage		$V_{GS} = V_{DS}, I_D = 250 \mu A$			3.0	-	5.0	V
R _{DS(on)}	Static I	Drain to Source On Resistance		V _{GS} = 10V, I _D = 6A			-	0.59	0.7	Ω
FS	Forwar	orward Transconductance			$V_{DS} = 40V, I_D = 6A$ (Note 4)			12	-	S
Dynamic C	haract	eristics								
C _{iss}	Input C	apacitance				-	1050	1395	pF	
C _{oss}	Output	ut Capacitance		− V _{DS} = 25V, V _{GS} = 0V − f = 1MHz			-	135	180	pF
C _{rss}	Revers	e Transfer Capacitance	9				-	11	17	pF
ס _{g(tot)}	Total G	I Gate Charge at 10V					-	21	30	nC
ସୁ _{gs}	Gate to Source Gate Charge		$V_{DS} = 400V, I_D = 11.5A$			-	6	-	nC	
Q _{gd}	Gate to	Gate to Drain "Miller" Charge		V _{GS} = 10V (Note 4, 5)			-	9	-	nC
Switching	Charac	teristics								
d(on)		n Delay Time					-	21	50	ns
r	Turn-O	urn-On Rise Time		V _{DD} = 250V, I _D = 11.5A			-	45	100	ns
d(off)	Turn-O	ff Delay Time		R _G = 259	R _G = 25Ω		-	50	110	ns
f	Turn-O	urn-Off Fall Time		(Note 4, 5)			-	35	80	ns
Drain-Sou	ce Dio	de Characteristic	s							
S	Maximum Continuous Drain to Source Diode Forward Current						-	-	11.5	Α
SM	Maximum Pulsed Drain to Source Diode For			orward Current			-	-	46	Α
/ _{SD}	Drain to	Source Diode Forward	d Voltage	V _{GS} = 0\	′, I _{SD} = 11.5A		-	-	1.5	V
'n	Reverse	e Recovery Time		V _{GS} = 0\	_s = 0V, I _{SD} = 11.5A dt = 100A/μs		-	134	-	ns
J ^u	Daviana	e Recovery Charge				(Note 4)	_	0.37		μC

4. Pulse Test: Pulse width $\leq 300 \mu s$, Duty Cycle $\leq 2\%$

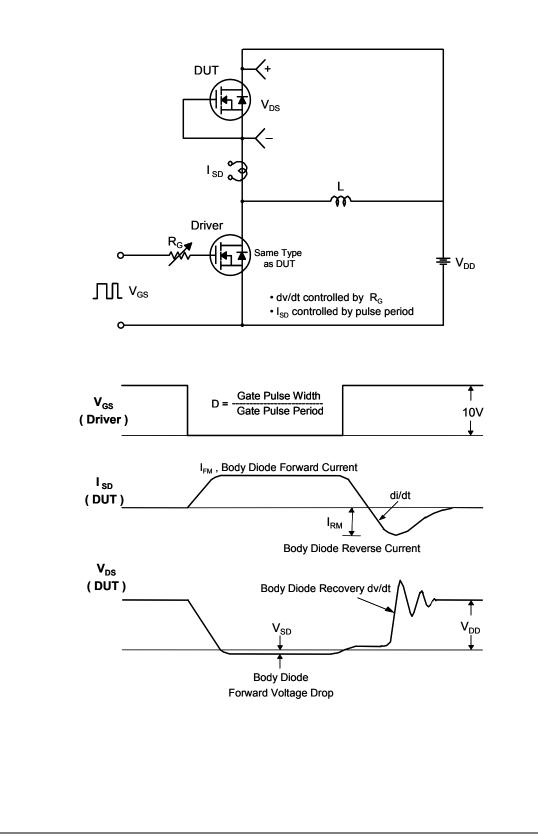
5. Essentially Independent of Operating Temperature Typical Characteristics

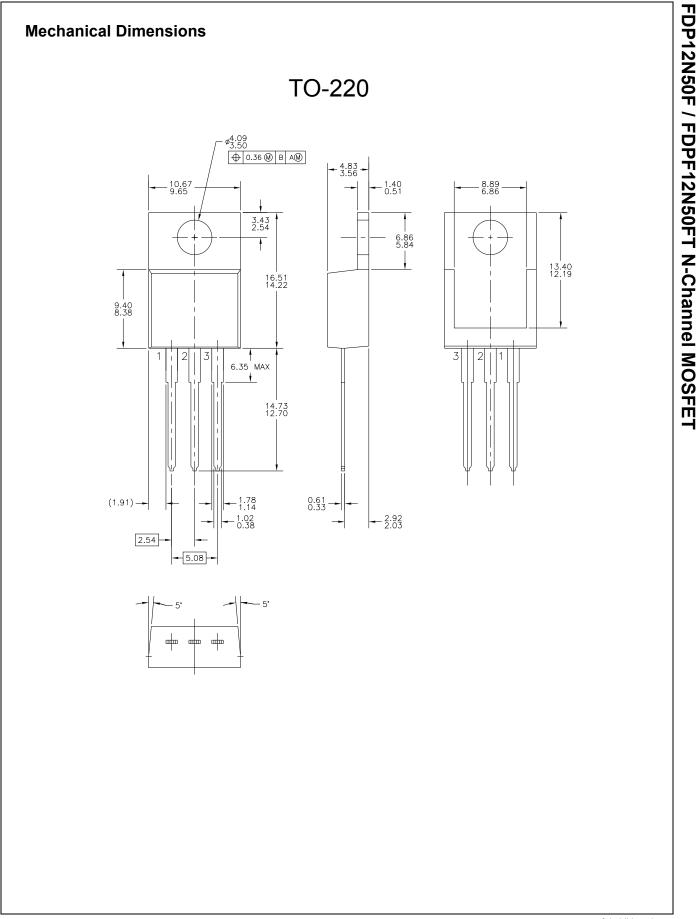

8

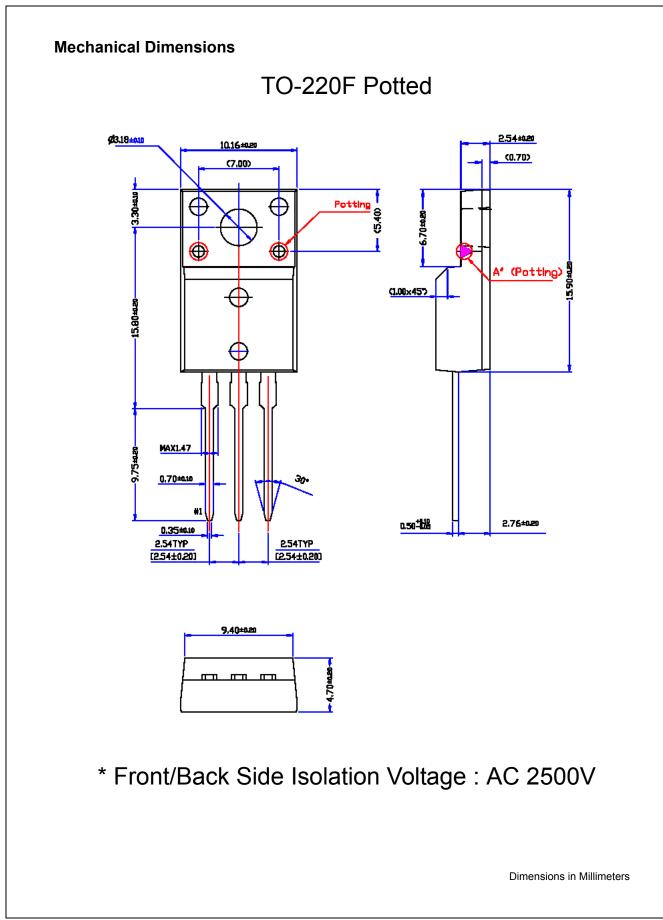

2.0


www.fairchildsemi.com

24







FDP12N50F / FDPF12N50FT N-Channel MOSFET

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx[®] Build it Now[™] CorePLUS[™] CROSSVOLT[™] CTL[™] Current Transfer Logic[™] EcoSPARK[®] EZSWITCH[™] *

Fairchild[®] Fairchild Semiconductor[®] FACT Quiet Series™ FACT[®] FAST[®] FastvCore™ FlashWriter[®] * FRFET® Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ GTO™ i-Lo™ IntelliMAX[™] **ISOPLANAR™** MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ Motion-SPM™ **OPTOLOGIC**[®] **OPTOPLANAR[®]**

FPS™

PDP-SPM™ Power220[®] Power247® POWEREDGE[®] Power-SPM™ PowerTrench® Programmable Active Droop™ **QFET[®]** QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8

SyncFET™ GENERAL ® The Power Franchise[®] franchise TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinvPower™ TinvPWM™ TinyWire™ µSerDes™ UHC® Ultra FRFET™ UniFET™ VCX™

* EZSWITCH[™] and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which,

 (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition			
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontin- ued by Fairchild semiconductor. The datasheet is printed for reference infor- mation only.			