HGT1N30N60A4D

600V，SMPS Series N－Channel IGBT with Anti－Parallel Hyperfast Diode

General Description

The HGT1N30N60A4D is a MOS gated high voltage switching device combining the best features of a MOSFETs and a bipolar transistor． These devices have the high input impedance of a MOSFET and the low on－state conduction loss of a bipolar transistor．The much lower on－ state voltage drop varies only moderately between $25^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$ ． This IGBT is ideal for many high voltage switching applications operating at high frequencies where low conduction losses are essential．This device has been optimized for high frequency switch mode power sup－ plies．
Formerly Developmental Type TA49345

Features

－100kHz Operation At 390V，20A
－600V Switching SOA Capability
－Typical Fall Time ．．．．．．．．．．58ns at $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$
－Low Conduction Loss

Package

Symbol

Device Maximum Ratings $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Ratings	Units
$\mathrm{BV}_{\mathrm{CES}}$	Collector to Emitter Breakdown Voltage	600	V
$\mathrm{I}_{\mathrm{C} 25}$	Collector Current Continuous，At Starting $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	96	A
$\mathrm{I}_{\mathrm{C} 110}$	Collector Current Continuous，At Starting $\mathrm{T}_{\mathrm{C}}=110^{\circ} \mathrm{C}$	39	A
I_{CM}	Collector Current Pulsed（Note 1）	240	A
$\mathrm{~V}_{\mathrm{GES}}$	Gate to Emitter Voltage Continuous	± 20	V
$\mathrm{~V}_{\mathrm{GEM}}$	Gate to Emitter Voltage Pulsed	± 30	V
SSOA	Switching Safe Operating Area at $\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$, Figure 2	150 A at 600 V	
P_{D}	Power Dissipation Total $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	255	W
	Power Dissipation Derating TC $>\mathrm{T}^{\circ} 5^{\circ} \mathrm{C}$	2.0	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ISOL }}$	RMS Isolation Voltage，Any Terminal to Case， $\mathrm{t}=1$ min．	2500	V
$\mathrm{~T}_{\mathrm{J}}$	Operating Junction Temperature Range	-55 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{STG}}$	Storage Junction Temperature Range	-55 to 150	${ }^{\circ} \mathrm{C}$
	Baseplate Screw Torque 4mm Metric Screw Size	1.5	$\mathrm{~N}-\mathrm{m}$
	Terminal Screw Torque 4mm Metric Screw Size	1.7	$\mathrm{~N}-\mathrm{m}$

[^0] operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied NOTE：
1．Pulse width limited by maximum junction temperature．

Package Marking and Ordering Information

Device Marking	Device	Package	Tape Width	Quantity
30N60A4D	HGT1N30N60A4D	SOT-227	-	-

Electrical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions		Min	Typ	Max	Units
Off State Characteristics							
$\mathrm{BV}_{\text {CES }}$	Collector to Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=0$		600	-	-	V
$\mathrm{I}_{\text {CES }}$	Collector to Emitter Leakage Current	$\mathrm{V}_{\mathrm{CE}}=600 \mathrm{~V}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	-	-	250	$\mu \mathrm{A}$
			$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$	-	-	2.8	mA
$\mathrm{I}_{\text {GES }}$	Gate to Emitter Leakage Current	$\mathrm{V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$		-	-	± 250	nA

On State Characteristics

$\mathrm{V}_{\text {CE(SAT }}$	Collector to Emitter Saturation Voltage	$\begin{aligned} & I_{C}=30 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		1.8	2.7	V
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		1.6	2.0	V
V_{EC}	Diode Forward Voltage	$\mathrm{I}_{\mathrm{EC}}=30 \mathrm{~A}$		-	2.2	2.5	V

Dynamic Characteristics

$\mathrm{Q}_{\mathrm{G}(\mathrm{ON})}$	Gate Charge	$\mathrm{I}_{\mathrm{C}}=30 \mathrm{~A}$,	$\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}$	-	225	270	nC
		$\mathrm{V}_{\mathrm{CE}}=300 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{GE}}=20 \mathrm{~V}$	-	300	360	nC
$\mathrm{V}_{\mathrm{GE}(\mathrm{TH})}$	Gate to Emitter Threshold Voltage	$\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=600 \mathrm{~V}$	4.5	5.2	7.0	V	
$\mathrm{~V}_{\mathrm{GEP}}$	Gate to Emitter Plateau Voltage	$\mathrm{I}_{\mathrm{C}}=30 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=300 \mathrm{~V}$	-	8.5	-	V	

Switching Characteristics

SSOA	Switching SOA	$\begin{aligned} & \mathrm{T}_{J}=150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=3 \Omega, \mathrm{~V}_{\mathrm{GE}}= \\ & 15 \mathrm{~V}, \mathrm{~L}=100 \mu \mathrm{H}, \mathrm{~V}_{\mathrm{CE}}=600 \mathrm{~V} \\ & \hline \end{aligned}$	150	-	-	A
$\mathrm{t}_{\mathrm{d}(\mathrm{ON}) \mathrm{l}}$	Current Turn-On Delay Time	$\begin{aligned} & \text { IGBT and Diode at } \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{CE}}=30 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{CE}}=390 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{G}}=3 \Omega \\ & \mathrm{~L}=200 \mu \mathrm{H} \\ & \text { Test Circuit - Figure } 24 \end{aligned}$	-	25	-	ns
t_{rl}	Current Rise Time		-	12	-	ns
$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$	Current Turn-Off Delay Time		-	150	-	ns
t_{fl}	Current Fall Time		-	38	-	ns
$\mathrm{E}_{\mathrm{ON} 1}$	Turn-On Energy (Note 2)		-	280	-	$\mu \mathrm{J}$
$\mathrm{E}_{\mathrm{ON} 2}$	Turn-On Energy (Note 2)		-	600	-	$\mu \mathrm{J}$
$\mathrm{E}_{\text {OFF }}$	Turn-Off Energy (Note 3)		-	240	350	$\mu \mathrm{J}$
$\mathrm{t}_{\mathrm{d}(\mathrm{ON}) \mathrm{l}}$	Current Turn-On Delay Time	$\begin{aligned} & \text { IGBT and Diode at } \mathrm{T}_{J}=125^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{CE}}=30 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{CE}}=390 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GEE}}=15 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{G}}=3 \Omega \\ & \mathrm{~L}=200 \mu \mathrm{H} \\ & \text { Test Circuit - Figure } 24 \end{aligned}$	-	24	-	ns
t_{rl}	Current Rise Time		-	11	-	ns
$\mathrm{t}_{\text {d(OFF) }}$	Current Turn-Off Delay Time		-	180	200	ns
t_{fl}	Current Fall Time		-	58	70	ns
$\mathrm{E}_{\text {ON1 }}$	Turn-On Energy (Note 2)		-	280	-	$\mu \mathrm{J}$
$\mathrm{E}_{\mathrm{ON} 2}$	Turn-On Energy (Note 2)		-	1000	1200	$\mu \mathrm{J}$
$\mathrm{E}_{\text {OFF }}$	Turn-Off Energy (Note 3)		-	450	750	$\mu \mathrm{J}$
t_{rr}	Diode Reverse Recovery Time	$\mathrm{l}_{\mathrm{EC}}=30 \mathrm{~A}, \mathrm{dl}_{\mathrm{EC}} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{s}$	-	40	55	ns
		$\mathrm{I}_{\mathrm{EC}}=1 \mathrm{~A}, \mathrm{dl}_{\mathrm{EC}} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{s}$	-	30	42	ns

Thermal Characteristics

$\mathrm{R}_{\text {日JC }}$	Thermal Resistance Junction-Case	IGBT	-	-	0.49	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		Diode			2.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTE:

[^1]Typical Performance Curves

Figure 1. DC Collector Current vs Case Temperature

Figure 3. Operating Frequency vs Collector to Emitter Current

Figure 5. Collector to Emitter On-State Voltage

Figure 2. Minimum Switching Safe Operating Area

Figure 4. Short Circuit Withstand Time

Figure 6. Collector to Emitter On-State Voltage

Figure 9．Turn－On Delay Time vs Collector to Emitter Current

Figure 11．Turn－Off Delay Time vs Collector to Emitter Current

Figure 8．Turn－Off Energy Loss vs Collector to Emitter Current

Figure 10．Turn－On Rise Time vs Collector to Emitter Current

Figure 12．Fall Time vs Collector to Emitter Current

Figure 13．Transfer Characteristic

Figure 15．Total Switching Loss vs Case Temperature

Figure 17．Capacitance vs Collector to Emitter Voltage

Figure 14．Gate Charge

Figure 16．Total Switching Loss vs Gate Resistance

Figure 18．Collector to Emitter On－State Voltage vs Gate to Emitter Voltage

Typical Performance Curves (Continued)

Figure 19. Diode Forward Current vs Forward Voltage Drop

Figure 21. Recovery Times vs Rate of Change of Current

Figure 20. Recovery Times vs Forward Current

Figure 22. Stored Charge vs Rate of Change of Current

t_{1}, RECTANGULAR PULSE DURATION (s)
Figure 23. IGBT Normalized Transient Thermal Impedance, Junction to Case

Test Circuit and Waveforms

Figure 24．Inductive Switching Test Circuit

Handling Precautions for IGBTs

Insulated Gate Bipolar Transistors are susceptible to gate－insulation damage by the electrostatic discharge of energy through the devices．When handling these devices，care should be exercised to assure that the static charge built in the handler＇s body capacitance is not discharged through the device．With proper handling and application procedures，however，IGBTs are currently being extensively used in production by numerous equipment manufacturers in military， industrial and consumer applications，with virtually no damage problems due to electrostatic discharge． IGBTs can be handled safely if the following basic precautions are taken：
1．Prior to assembly into a circuit，all leads should be kept shorted together either by the use of metal shorting springs or by the insertion into conductive material such as＂ECCOSORBDTM LD26＂or equiv－ alent．
2．When devices are removed by hand from their carriers，the hand being used should be grounded by any suitable means－for example，with a metallic wristband．
3．Tips of soldering irons should be grounded．
4．Devices should never be inserted into or removed from circuits with power on．
5．Gate Voltage Rating－Never exceed the gate－ voltage rating of $\mathrm{V}_{\mathrm{GEM}}$ ．Exceeding the rated V_{GE} can result in permanent damage to the oxide layer in the gate region．
6．Gate Termination－The gates of these devices are essentially capacitors．Circuits that leave the gate open－circuited or floating should be avoided．These conditions can result in turn－on of the device due to voltage buildup on the input capacitor due to leakage currents or pickup．
7．Gate Protection－These devices do not have an internal monolithic Zener diode from gate to emitter．If gate protection is required an external Zener is recommended．

Figure 25．Switching Test Waveforms

Operating Frequency Information

Operating frequency information for a typical device （Figure 3）is presented as a guide for estimating device performance for a specific application．Other typical frequency vs collector current（ $I_{C E}$ ）plots are possible using the information shown for a typical unit in Figures 5，6，7，8， 9 and 11．The operating frequency plot（Figure 3）of a typical device shows $\mathrm{f}_{\text {MAX } 1}$ or $f_{\text {MAX2 }}$ ；whichever is smaller at each point．The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature．
$f_{M A X 1}$ is defined by $f_{M A X 1}=0.05 /\left(\mathrm{t}_{\mathrm{d}(\mathrm{OFF}))^{\prime}}+\mathrm{t}_{\mathrm{d}(\mathrm{ON}) \mathrm{I}}\right)$ ． Deadtime（the denominator）has been arbitrarily held to 10\％of the on－state time for a 50% duty factor．Other definitions are possible． $\mathrm{t}_{\mathrm{d}(\mathrm{OFF}) \text { ）}}$ and $\mathrm{t}_{\mathrm{d}(\mathrm{ON}) \text { I }}$ are defined in Figure 25．Device turn－off delay can establish an additional frequency limiting condition for an application other than $T_{J M} \cdot \mathrm{t}_{\mathrm{d}(\mathrm{OFF})}$ is important when controlling output ripple under a lightly loaded condition．
$f_{\text {MAX2 }}$ is defined by $f_{\text {MAX2 }}=\left(\mathrm{P}_{\mathrm{D}}-\mathrm{P}_{\mathrm{C}}\right) /\left(\mathrm{E}_{\mathrm{OFF}}+\mathrm{E}_{\mathrm{ON} 2}\right)$ ．The allowable dissipation（ P_{D} ）is defined by $P_{D}=\left(T_{J M}-T_{C}\right)$／ $\mathrm{R}_{\theta \mathrm{JC}}$ ．The sum of device switching and conduction losses must not exceed P_{D} ．A 50% duty factor was used（Figure 3）and the conduction losses（ P_{C} ）are approximated by $\mathrm{P}_{\mathrm{C}}=\left(\mathrm{V}_{\mathrm{CE}} \times \mathrm{I}_{\mathrm{CE}}\right) / 2$ ．
$\mathrm{E}_{\mathrm{ON} 2}$ and $\mathrm{E}_{\mathrm{OFF}}$ are defined in the switching waveforms shown in Figure $25 . \mathrm{E}_{\mathrm{ON} 2}$ is the integral of the instantaneous power loss（ $I_{C E} \times \mathrm{V}_{C E}$ ）during turn－on and $E_{\text {OFF }}$ is the integral of the instantaneous power loss（ $\mathrm{I}_{\mathrm{CE}} \times \mathrm{V}_{\mathrm{CE}}$ ）during turn－off．All tail losses are included in the calculation for $\mathrm{E}_{\mathrm{OFF}}$ ；i．e．，the collector current equals zero（ $\mathrm{I}_{\mathrm{CE}}=0$ ）

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {TM }}$	$\mathrm{FAST}^{\text {® }}$	OPTOPLANAR ${ }^{\text {™ }}$	STAR*POWER ${ }^{\text {TM }}$
Bottomless ${ }^{\text {TM }}$	FASTr ${ }^{\text {TM }}$	PACMAN ${ }^{\text {TM }}$	Stealth ${ }^{\text {™ }}$
CoolFET ${ }^{\text {TM }}$	FRFET ${ }^{\text {m }}$	POP'м	SuperSOT ${ }^{\text {TM }}$-3
CROSSVOLT ${ }^{\text {TM }}$	GlobalOptoisolator ${ }^{\text {TM }}$	Power247 ${ }^{\text {тм }}$	SuperSOT ${ }^{\text {TM }}$-6
DenseTrench ${ }^{\text {™ }}$	GTO ${ }^{\text {™ }}$	PowerTrench ${ }^{\circledR}$	SuperSOT ${ }^{\text {TM }}$-8
DOME ${ }^{\text {TM }}$	$\mathrm{HiSeC}^{\text {¹ }}$	QFET ${ }^{\text {TM }}$	SyncFET ${ }^{\text {TM }}$
EcoSPARK ${ }^{\text {Tm }}$	ISOPLANAR ${ }^{\text {m }}$	QS ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {TM }}$
$\mathrm{E}^{2} \mathrm{CMOS}^{\text {¹ }}$	LittleFET ${ }^{\text {TM }}$	QTOptpelectronics ${ }^{\text {TM }}$	TruTranslation ${ }^{\text {TM }}$
Ensigna ${ }^{\text {M }}$	MicroFET ${ }^{\text {tm }}$	Quiet Series ${ }^{\text {TM }}$	UHC ${ }^{\text {™ }}$
FACT ${ }^{\text {™ }}$	MICROWIRE ${ }^{\text {TM }}$	SILENTSWITCHER ${ }^{\text {® }}$	UltraFET ${ }^{\circledR}$
FACT Quiet Series ${ }^{\text {™ }}$	OPTOLOGIC ${ }^{\text {¹ }}$	SMART START ${ }^{\text {TM }}$	VCX ${ }^{\text {™ }}$
STAR*POWER is used under license			

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR

CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

[^0]: CAUTION：Stresses above those listed in＂Absolute Maximum Ratings＂may cause permanent damage to the device．This is a stress only rating and

[^1]: 2. Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. E_{ON} is the turn-on loss of the IGBT only. EON2 is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same T_{J} as the IGBT. The diode type is specified in figure 24.
 3. Turn-Off Energy Loss ($E_{\text {OFF }}$) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero (1 CE $=0 \mathrm{~A}$). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.
