

HARRIS HGTG30N120D2

April 1995

30A, 1200V N-Channel IGBT

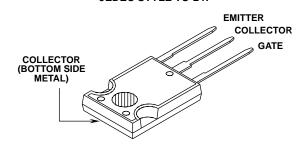
Features

- 30A, 1200V
- Latch Free Operation
- Typical Fall Time 580ns
- · High Input Impedance
- Low Conduction Loss

Description

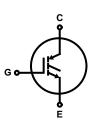
The HGTG30N120D2 is a MOS gated high voltage switching device combining the best features of MOSFETs and bipolar transistors. The device has the high input impedance of a MOS-FET and the low on-state conduction loss of a bipolar transistor. The much lower on-state voltage drop varies only moderately between +25°C and +150°C.

The IGBTs are ideal for many high voltage switching applications operating at moderate frequencies where low conduction losses are essential, such as: AC and DC motor controls, power supplies and drivers for solenoids, relays and contactors.


PACKAGING AVAILABILITY

PART NUMBER	PACKAGE	BRAND		
HGTG30N120D2	TO-247	G30N120D2		

Formerly Developmental Type TA49010


Package

JEDEC STYLE TO-247

Terminal Diagram

N-CHANNEL ENHANCEMENT MODE

Absolute Maximum Ratings T_C = +25°C, Unless Otherwise Specified

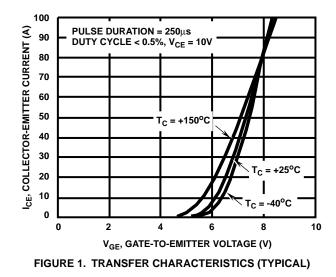
	HGTG30N120D2	UNITS
Collector-Emitter Voltage	1200	V
Collector-Gate Voltage, $R_{GE} = 1M\Omega \dots V_{CGR}$	1200	V
Collector Current Continuous at T _C = +25°C	50	Α
at $V_{GE} = 15V$ at $T_C = +90^{\circ}C \dots I_{C90}$	30	Α
Collector Current Pulsed (Note 1)	200	Α
Gate-Emitter Voltage ContinuousV _{GES}	±20	V
Gate-Emitter Voltage Pulsed	±30	V
Switching Safe Operating Area at T _J = +150°C	200A at 0.8 BV _{CES}	-
Power Dissipation Total at T _C = +25°C	208	W
Power Dissipation Total Derating T _C > +25°C	1.67	W/°C
Operating and Storage Junction Temperature Range	-55 to +150	°C
Maximum Lead Temperature for Soldering	260	°C
Short Circuit Withstand Time (Note 2) at V _{GE} = 15Vt _{SC}	6	μS
at V _{GE} = 10V	15	μS

NOTES:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. $V_{CE(PEAK)} = 720V$, $T_C = +125^{\circ}C$, $R_{GE} = 25\Omega$.

HARRIS SEMICONDUCTOR IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS:

4,364,073	4,417,385	4,430,792	4,443,931	4,466,176	4,516,143	4,532,534	4,567,641
4,587,713	4,598,461	4,605,948	4,618,872	4,620,211	4,631,564	4,639,754	4,639,762
4.641.162	4.644.637	4.682.195	4.684.413	4.694.313	4.717.679	4.743.952	4.783.690
4.794.432	4.801.986	4.803.533	4.809.045	4.809.047	4.810.665	4.823.176	4.837.606
4.860.080	4.883.767	4.888.627	4.890.143	4.901.127	4.904.609	4.933.740	4.963.951
4.969.027	, 2,	,,	,,-	,,	,,	,,-	, - 2 - ,


Specifications HGTG30N120D2

Electrical Specifications $T_C = +25^{\circ}C$, Unless Otherwise Specified

PARAMETERS	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Collector-Emitter Breakdown Voltage	BV _{CES}	$I_C = 250 \mu A, V_{GE} =$	1200	-	-	V	
Zero Gate Voltage Collector Current	I _{CES}	V _{CE} = BV _{CES}	$T_{\rm C} = +25^{\rm o}{\rm C}$	-	-	1.0	mA
		$V_{CE} = 0.8 \text{ BV}_{CES}$	$T_C = +125^{\circ}C$	-	-	4.0	mA
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	$I_{C} = I_{C90},$ $V_{GE} = 15V$	$T_{\rm C} = +25^{\rm o}{\rm C}$	-	3.0	3.5	V
			$T_C = +125^{\circ}C$	-	3.2	3.5	V
		$I_C = I_{C90}$	$T_{\rm C} = +25^{\rm o}{\rm C}$	-	3.2	3.8	V
		V _{GE} = 10V	$T_C = +125^{\circ}C$	-	3.4	3.8	V
Gate-Emitter Threshold Voltage	V _{GE(TH)}	$V_{GE} = V_{CE}$, $I_C = 1 \text{mA}$	$T_{C} = +25^{\circ}C$	3.0	4.5	6.0	V
Gate-Emitter Leakage Current	I _{GES}	V _{GE} = ±20V		-	-	±500	nA
Gate-Emitter Plateau Voltage	V_{GEP}	$I_{C} = I_{C90}, V_{CE} = 0.5 \text{ BV}_{CES}$		-	7.3	-	V
On-State Gate Charge	$Q_{G(ON)}$	$I_C = I_{C90},$ $V_{CE} = 0.5 \text{ BV}_{CES}$	V _{GE} = 15V	-	185	240	nC
			V _{GE} = 20V	-	240	315	nC
Current Turn-On Delay Time	t _{D(ON)I}	L = 50μ H, $I_C = I_{C90}$, $R_G = 25\Omega$, $V_{GE} = 15V$, $T_J = +125^{\circ}$ C, $V_{CE} = 0.8 \; BV_{CES}$		-	100	-	ns
Current Rise Time	t _{RI}			-	150	-	ns
Current Turn-Off Delay Time	t _{D(OFF)I}			-	760	990	ns
Current Fall Time	t _{FI}			-	580	750	ns
Turn-Off Energy (Note 1)	W _{OFF}		-	8.4	-	mJ	
Current Turn-On Delay Time	t _{D(ON)I}	$ \begin{array}{c} L = 50 \mu \text{H}, \ I_{C} = I_{C90}, \ R_{G} = 25 \Omega, \\ V_{GE} = 10 \text{V}, \ T_{J} = +125^{\circ} \text{C}, \\ V_{CE} = 0.8 \ \text{BV}_{CES} \end{array} $		-	100	-	ns
Current Rise Time	t _{RI}			-	150	-	ns
Current Turn-Off Delay Time	t _{D(OFF)I}			-	610	790	ns
Current Fall Time	t _{FI}	1	-	580	750	ns	
Turn-Off Energy (Note 1)	W _{OFF}	1	-	8.4	-	mJ	
Thermal Resistance Junction-to-Case	$R_{ heta JC}$			-	0.5	0.6	°C/W

NOTE: 1. Turn-Off Energy Loss (W_{OFF}) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero (I_{CE} = 0A) The HGTG20N100D2 was tested per JEDEC standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.

Typical Performance Curves

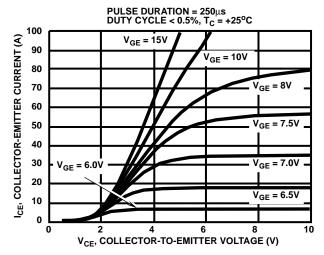
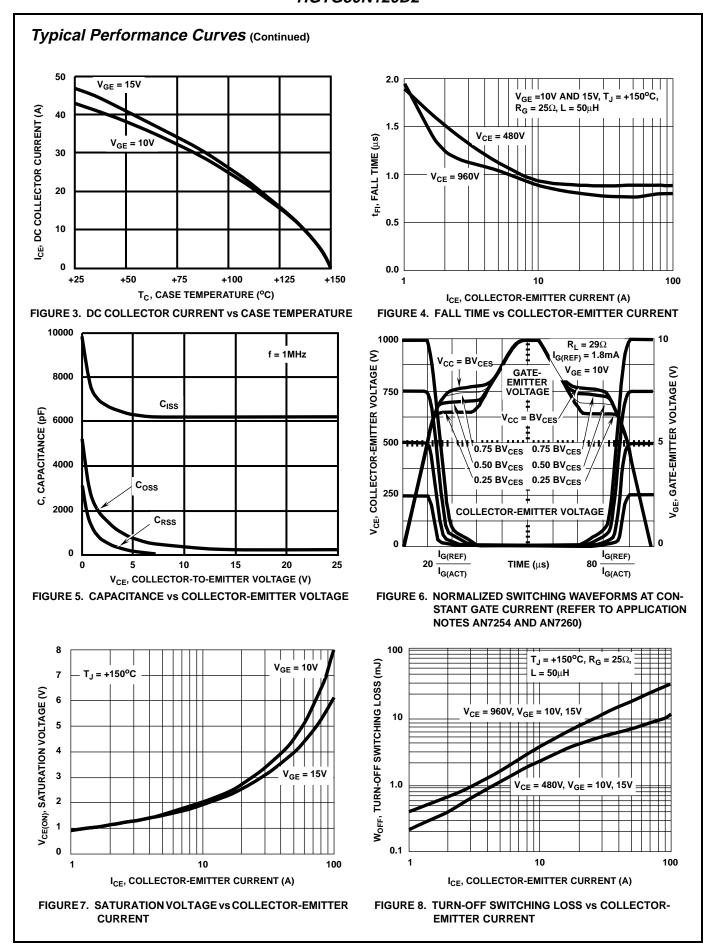
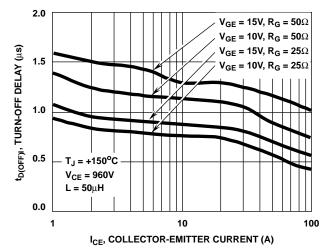




FIGURE 2. SATURATION CHARACTERISTICS (TYPICAL)

Typical Performance Curves (Continued)

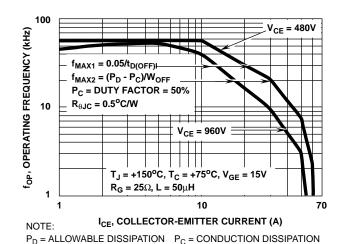


FIGURE 9. TURN-OFF DELAY vs COLLECTOR-EMITTER CURRENT

FIGURE 10. OPERATING FREQUENCY vs COLLECTOR-EMITTER CURRENT AND VOLTAGE

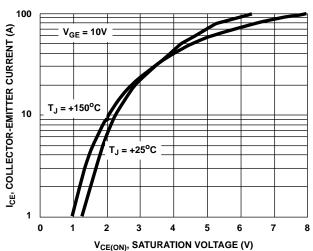


FIGURE 11. COLLECTOR-EMITTER SATURATION VOLTAGE

Test Circuit

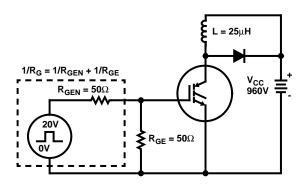


FIGURE 12. INDUCTIVE SWITCHING TEST CIRCUIT

HGTG30N120D2

Operating Frequency Information

Operating frequency information for a typical device (Figure 10) is presented as a guide for estimating device performance for a specific application. Other typical frequency vs collector current (I_{CE}) plots are possible using the information shown for a typical unit in Figures 7, 8 and 9. The operating frequency plot (Figure 10) of a typical device shows f_{MAX1} or f_{MAX2} whichever is smaller at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature.

 f_{MAX1} is defined by $f_{MAX1} = 0.05/t_{D(OFF)I}$. $t_{D(OFF)I}$ deadtime (the denominator) has been arbitrarily held to 10% of the onstate time for a 50% duty factor. Other definitions are possible. $t_{D(OFF)I}$ is defined as the time between the 90% point of the trailing edge of the input pulse and the point where the collector current falls to 90% of its maximum value. Device

turn-off delay can establish an additional frequency limiting condition for an application other than T_{JMAX} . $t_{D(OFF)l}$ is important when controlling output ripple under a lightly loaded condition.

 f_{MAX2} is defined by $f_{MAX2}=(P_D-P_C)/W_{OFF}$. The allowable dissipation (P_D) is defined by $P_D=(T_{JMAX}-T_C)/R_{\theta JC}.$ The sum of device switching and conduction losses must not exceed P_D . A 50% duty factor was used (Figure 10) and the conduction losses (P_C) are approximated by $P_C=(V_{CE}\bullet I_{CE})/2.$ W_{OFF} is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero $(I_{CE}=0A).$

The switching power loss (Figure 10) is defined as $f_{MAX2} \bullet W_{OFF}$. Turn-on switching losses are not included because they can be greatly influenced by external circuit conditions and components.