

IRFF120

6.0A, 100V, 0.300 Ohm, N-Channel Power MOSFET

This N -Channel enhancement mode silicon gate power field effect transistor is an advanced power MOSFET designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching convertors, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.

Ordering Information

PART NUMBER	PACKAGE	BRAND
IRFF120	TO-205AF	IRFF120

NOTE: When ordering, use the entire part number.

Features

- $6.0 \mathrm{~A}, 100 \mathrm{~V}$
- $r_{D S(O N)}=0.300 \Omega$
- Single Pulse Avalanche Energy Rated
- SOA is Power Dissipation Limited
- Nanosecond Switching Speeds
- Linear Transfer Characteristics
- High Input Impedance
- Related Literature
- TB334, "Guidelines for Soldering Surface Mount Components to PC Boards"

Symbol

Packaging

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Absolute Maximum Ratings $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified}

\hline \& \& IRFF120 \& UNITS

\hline Drain to Source Voltage (Note 1) \& $V_{D S}$ \& 100 \& V

\hline Drain to Gate Voltage ($\mathrm{R}_{\mathrm{GS}}=20 \mathrm{k} \Omega$) (Note 1) \& - $\mathrm{V}_{\text {DGR }}$ \& 100 \& V

\hline Continuous Drain Current \& ID \& 6.0 \& A

\hline Pulsed Drain Current (Note 3) \& . . ${ }_{\text {l }}^{\text {d }}$ \& 24 \& A

\hline Gate to Source Voltage \& . V_{GS} \& ± 20 \& V

\hline Maximum Power Dissipation \& P_{D} \& 20 \& W

\hline Linear Derating Factor . \& \& 0.16 \& W/ ${ }^{\circ} \mathrm{C}$

\hline Single Pulse Avalanche Energy Rating (Note 4) \& $E_{\text {AS }}$ \& 36 \& ${ }^{\text {mJ }}$

\hline Operating and Storage Temperature \& . $\mathrm{J}_{\text {, }} \mathrm{T}_{\text {STG }}$ \& -55 to 150 \& ${ }^{\circ} \mathrm{C}$

\hline \multicolumn{4}{|l|}{Maximum Temperature for Soldering 300}

\hline Leads at 0.063 in (1.6 mm) from Case for 10 s . \& $\ldots \mathrm{T}_{\mathrm{L}}$ \& 300 \& º

0

\hline Package Body for 10s, See Techbrief 334 \& . $\mathrm{T}_{\text {pkg }}$ \& 260 \& ${ }^{\circ} \mathrm{C}$

\hline
\end{tabular}

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

Electrical Specifications $T_{C}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage	BV ${ }_{\text {DSS }}$	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ (Figure 10)		100	-	-	V
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{TH})}$	$V_{G S}=V_{D S}, l_{D}=250 \mu \mathrm{~A}$		2.0	-	4.0	\checkmark
Zero Gate Voltage Drain Current	IDSS	$\mathrm{V}_{\mathrm{DS}}=$ Rated $\mathrm{BV} \mathrm{VSS}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$		-	-	25	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DS}}=0.8 \times$ Rated $\mathrm{BV} \mathrm{V}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		-	-	250	$\mu \mathrm{A}$
On-State Drain Current (Note 2)	${ }^{\text {d (ON }}$)			6.0	-	-	A
Gate to Source Leakage Current	IGSS	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$			-	± 100	nA
Drain to Source On Resistance (Note 2)	$\mathrm{r}_{\mathrm{DS}}(\mathrm{ON})$	$\mathrm{I}_{\mathrm{D}}=3.0 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$ (Figures 8, 9)		-	0.25	0.300	Ω
Forward Transconductance (Note 2)	9fs	$\mathrm{V}_{\mathrm{DS}}>\mathrm{I}_{\mathrm{D}(\mathrm{ON})} \times \mathrm{r}_{\mathrm{DS}}\left(\mathrm{ON}\right.$ M MAX, $\mathrm{I}_{\mathrm{D}}=3.0 \mathrm{~A}$ (Figure 12)		1.5	2.9		S
Turn-On Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	$V_{D D} \cong 0.5 \times$ Rated $B V_{D S S}, I_{D}=6.0 A, R_{G}=9.1 \Omega$, $V_{G S}=10 \mathrm{~V}$ (Figures 17, 18), $\mathrm{R}_{\mathrm{L}}=8 \Omega$ for $\mathrm{V}_{\mathrm{DSS}}=50 \mathrm{~V}$, $R_{L}=6.3 \Omega$ for $V_{D S S}=40 \mathrm{~V}$, MOSFET Switching Times are Essentially Independent of Operating Temperatures		-	20	40	ns
Rise Time	$\mathrm{t}_{\text {r }}$			-	37	70	ns
Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d} \text { (} \mathrm{OFF})}$			-	50	100	ns
Fall Time	t_{f}			-	35	70	ns
Total Gate Charge (Gate to Source + Gate to Drain)	$\mathrm{Q}_{\mathrm{g}(\mathrm{TOT})}$	$V_{G S}=10 \mathrm{~V}, I_{D}=6.0 \mathrm{~A}, V_{D S}=0.8 \times$ Rated $B V_{D S S}$ (Figures 14, 19, 20) Gate Charge is Essentially Independent of Operating Temperature		-	10	15	nC
Gate to Source Charge	Q_{gs}			-	6.0	-	nc
Gate to Drain ("Miller") Charge	Q_{gd}			-	4.0	-	nc
Input Capacitance	$\mathrm{C}_{\text {ISS }}$	$V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{G S}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}($ Figure 11)		-	450	-	pF
Output Capacitance	Coss			-	20	-	pF
Reverse Transfer Capacitance	$\mathrm{C}_{\text {RSS }}$			-	50	-	pF
Internal Drain Inductance	$L_{\text {D }}$	Measured from the Drain Lead, 5.0 mm (0.2in) from Header to Center of Die	Modified MOSFET Symbol Showing the Internal Devices Inductances	-	5.0	-	nH
Internal Source Inductance	Ls	Measured from the Source Lead, 5.0 mm (0.2in) from Header to Source Bonding Pad		-	15	-	nH
Thermal Resistance, Junction to Case	$\mathrm{R}_{\text {AJC }}$			-	-	6.25	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction to Ambient	$\mathrm{R}_{\text {өJA }}$	Free Air Operation		-	-	175	${ }^{\circ} \mathrm{C} N$

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Continuous Source to Drain Current	$I_{\text {SD }}$	Modified MOSFET Symbol Showing the Integral Reverse P-N Junction Rectifier		-	-	6.0	A
Pulse Source to Drain Current (Note 3)	$I_{\text {SM }}$			-	-	24	A
Source to Drain Diode Voltage (Note 2)	$\mathrm{V}_{\text {SD }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {SD }}=6.0 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ (Figure 13)		-	-	2.5	V
Reverse Recovery Time	$t_{\text {rr }}$	$\mathrm{T}_{J}=150^{\circ} \mathrm{C}, \mathrm{I}_{\text {SD }}=6.0 \mathrm{~A}, \mathrm{dl} \mathrm{SD}^{\prime} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$		-	230	-	ns
Reverse Recovery Charge	QRR	$\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{SD}}=6.0 \mathrm{~A}, \mathrm{dl} \mathrm{SD}^{2} \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$		-	1.0	-	$\mu \mathrm{C}$
Forward Turn-On Time	${ }^{\text {toN }}$	Intrinsic Turn-on Time is Negligible, Turn-On Speed is Substantially controlled by $L_{S}+L_{D}$		-	-	-	-

NOTES:
2. Pulse test: pulse width $\leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
3. Repetitive rating: pulse width limited by Max junction temperature. See Transient Thermal Impedance curve (Figure 3).
4. $V_{D D}=25 \mathrm{~V}$, starting $T_{J}=25^{\circ} \mathrm{C}, \mathrm{L}=1.5 \mathrm{mH}, \mathrm{R}_{\mathrm{G}}=25 \Omega$, peak $\mathrm{I}_{\mathrm{AS}}=6.0 \mathrm{~A}$ (Figures 15,16).

Typical Performance Curves Unless Otherwise Specified

FIGURE 1. NORMALIZED POWER DI\$\$IPATION vs CASE TEMPERATURE

FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE

