N - CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTOR

TYPE	V _{DSS}	R _{DS(on)}	ID
IRFP350FI	400 V	0.3 Ω	10 A

SGS-THOMSON MICROELECTRONICS

- HIGH VOLTAGE FOR OFF-LINE SMPS
- HIGH CURRENT FOR SMPS UPTO 350W
 ULTRA FAST SWITCHING FOR OPERATION
- AT > 100KHz • EASY DRIVE - REDUCES SIZE AND COST
 - INDUSTRIAL APPLICATIONS:
- SWITCHING MODE POWER SUPPLIES
- MOTOR CONTROLS

N - channel enhancement mode POWER MOS field effect transistor. Fast switching and easy drive make this POWER MOS transistor ideal for high voltage switching applications include electronic welders, switched mode power supplies and sonar equipment.

ABSOLUTE MAXIMUM RA	ATINGS
---------------------	--------

Vne *	Drain-source voltage ($V_{GS} = 0$)	400	V
VDGR *	Drain-gate voltage ($R_{GS} = 20 \text{ K}\Omega$)	400	V
VGS	Gate-source voltage	±20	V
ID	Drain current (cont.) at $T_c = 25^{\circ}C$	10	A
ID	Drain current (cont.) at $T_c = 100^{\circ}C$	6.3	A
I _{DM} (*)	Drain current (pulsed)	60	A
IDLM	Drain inductive current, clamped (L = 100μ H)	60	A
Ptot	Total dissipation at T _c <25°C	70	W
	Derating factor	0.56	W/°C
T _{sto}	Storage temperature	- 55 to 150	°C
Tj	Max. operating junction temperature	150	°C

* Ti = 25°C to 125°C

(*) Repetitive Rating: Pulse width limited by max junction temperature

June 1988

1/6

THERMAL DATA

R _{thi - case} Thermal resistance junction-case	max	1.78	°C/W
R _{thc-s} Thermal resistance case-sink	typ	0.1	°C/W
R _{thi amb} Thermal resistance junction-ambient	max	30	°C/W
T ₁ Maximum lead temperature for soldering purpose		300	°C

ELECTRICAL CHARACTERISTICS ($T_j = 25^{\circ}C$ unless otherwise specified)

Parameters Test Conditions Mi	n. Typ.	Max.	Unit
-------------------------------	---------	------	------

OFF

V _(BR) DSS	Drain-source breakdown voltage	$I_{D} = 250 \ \mu A$ $V_{GS} = 0$	400	AENT ST SW Hz	A CUP RA FA	V
IDSS	Zero gate voltage drain current ($V_{GS} = 0$)	V_{DS} = Max Rating V_{DS} = Max Rating × 0.8 T _j = 125°C	souce Nous	R - B	250 1000	<i>Ιμ</i> Α <i>Ιμ</i> Α
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	$V_{GS} = \pm 20 V$			±100	nA

ON **

V _{GS (th)}	Gate threshold voltage	$V_{DS} = V_{GS}$	$I_{\rm D} = 250 \ \mu {\rm A}$	2	gqa g	4	V
I _{D (on)}	On-state drain current	$V_{DS} > I_{D (on)} \times$	$R_{DS (on) max}$, $V_{GS} = 10 V$	10	Peters.		А
R _{DS (on)}	Static drain-source on resistance	$V_{GS} = 10 V$	I _D = 8.0 A		~~~	0.3	Ω

DYNAMIC

9 _{fs} **	Forward transconductance	$\begin{array}{l} V_{DS} > I_{D \ (on)} \ \times \ R_{DS \ (on) \ max} \\ I_{D} = \ 8.0 \ A \end{array}$	8.0	MIXAI	aru	mho
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 25 V$ f = 1 MHz $V_{GS} = 0$	rce vola Notale ce volaș	uce-nii Migffili Iuce-ei	3000 600 200	pF pF pF

SWITCHING

$\begin{array}{c}t_{d~(on)}\\t_{r}\\t_{d~(off)}\\t_{f}\end{array}$	Turn-on time Rise time Turn-off delay time Fall time		35 65 150 75	ns ns ns ns
Qg	Total Gate Charge	$V_{GS} = 10 V$ $I_D = 18 A$ $V_{DS} =$ Max Rating × 0.8 (see test circuit)	120	nC

SGS-THOMSON

ELECTRICAL CHARACTERISTICS (Continued)

Parameters	Test Conditions	Min.	Тур.	Max.	Unit
		the second se	12		

SOURCE DRAIN DIODE

I _{SD} I _{SDM} (*)	Source-drain current Source-drain current (pulsed)	1 marine			10 60	A A
V _{SD} **	Forward on voltage	I _{SD} = 15 A	$V_{GS} = 0$		1.6	V
t _{rr}	Reverse recovery time	T _j = 150°C		1000		ns
Q _{rr}	Reverse recovered charge	I _{SD} = 15 A	di/dt = 100 A/ μ s	6.6		μC

** Pulsed: Pulse duration \leq 300 μ s, duty cycle \leq 1.5%

(*) Repetitive Rating: Pulse width limited by max junction temperature

Thermal impedance

Derating curve

Output characteristics

Transfer characteristics

Gate charge vs gate-source voltage

Capacitance variation

Normalized breakdown voltage vs temperature

4/6

Clamped inductive test circuit

Switching times test circuit

Clamped inductive waveforms

SC-0243

Gate charge test circuit

Q VDD O +VDS CURRENT ADJUST R RL REGULATOR \$D PULSE TO OBTAIN SPECIFIED ID GENERATOR SAME TYPE 0.2µF G VGS 50KΩ 12V --0 AS DUT V_{DS} Z = 0.3μF \$S DUT DUT 1.5mA S h IG -V_{DS} 0 SC-0246 CURRENT CURRENT SAMPLING SAMPLING RESISTOR RESISTOR SC-0244

(v) Electritive Rating Pulse width unded by max

ISOWATT218 PACKAGE CHARACTERISTICS AND APPLICATION.

ISOWATT218 is fully isolated to 4000V dc. Its thermal impedance, given in the data sheet, is optimised to give efficient thermal conduction together with excellent electrical isolation.

The structure of the case ensures optimum distances between the pins and heatsink. These distances are in agreement with VDE and UL creepage and clearance standards. The ISOWATT218 package eliminates the need for external isolation so reducing fixing hardware.

The package is supplied with leads longer than the standard TO-218 to allow easy mounting on pcbs. Accurate moulding techniques used in manufacture assures consistent heat spreader-to-heatsink capacitance

ISOWATT218 thermal performance is better than that of the standard part, mounted with a 0.1mm mica washer. The thermally conductive plastic has a higher breakdown rating and is less fragile than mica or plastic sheets. Power derating for ISOWATT218 packages is determined by:

$$P_{D} = \frac{T_{j} - T_{c}}{R_{th}}$$

from this I_{Dmax} for the POWER MOS can be calculated:

THERMAL IMPEDANCE OF ISOWATT218 PACKAGE

Fig. 1 illustrates the elements contributing to the thermal resistance of transistor heatsink assembly, using ISOWATT218 package.

The total thermal resistance $R_{th (tot)}$ is the sum of each of these elements.

The transient thermal impedance, Z_{th} for different pulse durations can be estimated as follows:

1 - for a short duration power pulse less than 1ms;

$$Z_{th} < R_{thJ-C}$$

2 - for an intermediate power pulse of 5ms to 50ms:

$$Z_{th} = R_{thJ-C}$$

3 - for long power pulses of the order of 500ms or greater:

$$Z_{th} = R_{thJ-C} + R_{thC-HS} + R_{thHS-amb}$$

It is often possibile to discern these areas on transient thermal impedance curves.

Fig. 1

RthI-C RthC-HS RthHS-amb

SGS-THOMSON