

ON Semiconductor®

ISL9V3040D3S / ISL9V3040S3S / ISL9V3040P3 / ISL9V3040S3

and

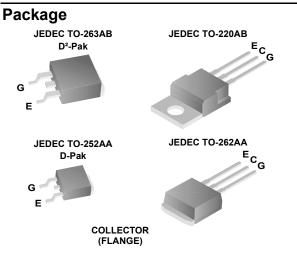
EcoSPARK[®] 300mJ, 400V, N-Channel Ignition IGBT

General Description

The

more information.

Formerly Developmental Type 49362


Applications

- Automotive Ignition Coil Driver Circuits
- Coil- On Plug Applications

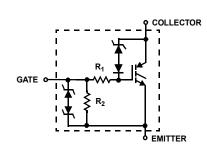
Features

- · Space saving D-Pak package availability
- SCIS Energy = 300mJ at T₁ = 25° C
- Logic Level Gate Drive

Symbol

ISL9V3040D3S, ISL9V3040S3S, ISL9V3040P3,

ISL9V3040S3 are the next generation ignition IGBTs that offer

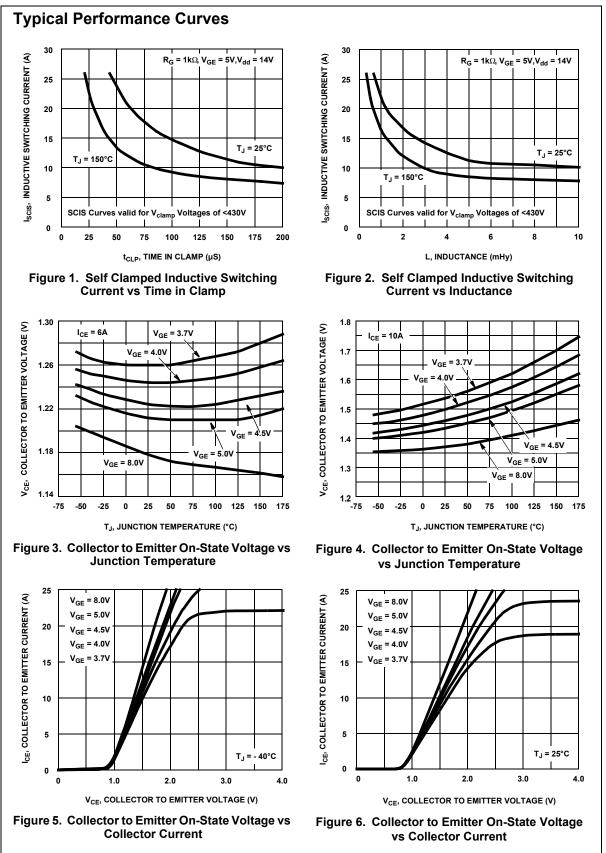

outstanding SCIS capability in the space saving D-Pak (TO-252), as well as the industry standard D²-Pak (TO-263), and TO-262 and TO-

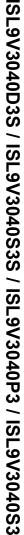
220 plastic packages. This device is intended for use in automotive ignition circuits, specifically as a coil driver. Internal diodes provide

EcoSPARK® devices can be custom made to specific clamp

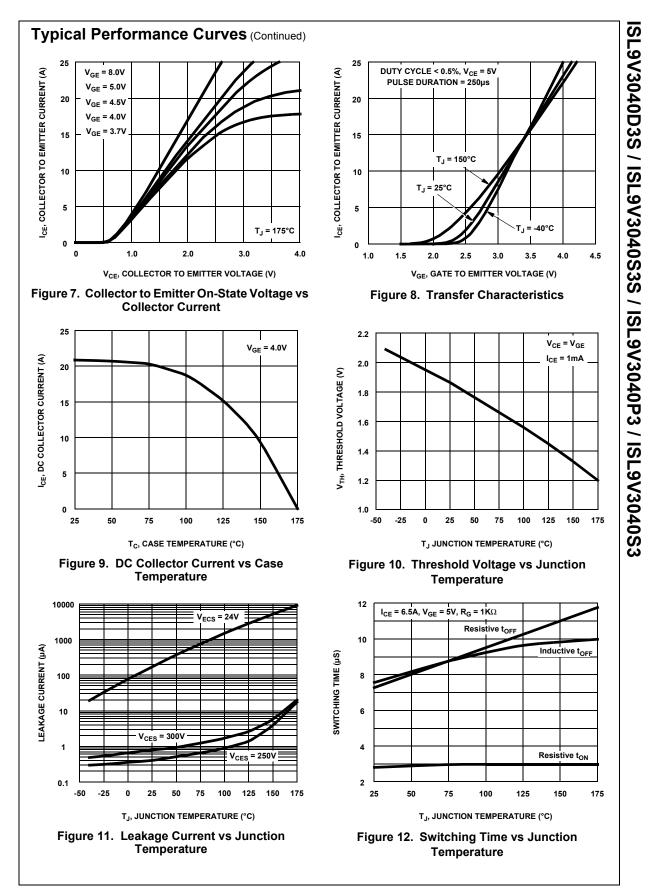
voltages. Contact your nearest On Semiconductor sales office for

voltage clamping without the need for external components.

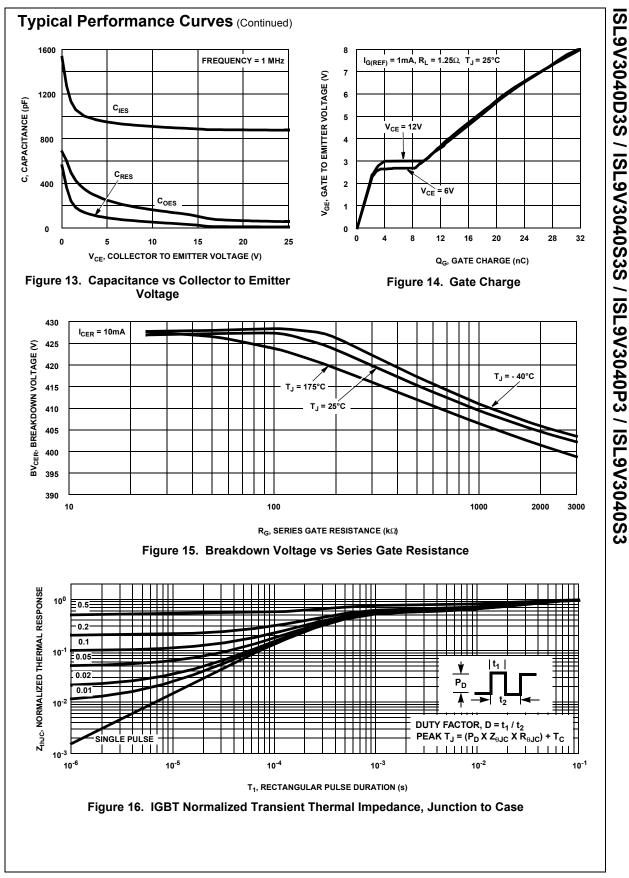

ISL9V3040D3S / ISL9V3040S3S / ISL9V3040P3 / ISL9V3040S3

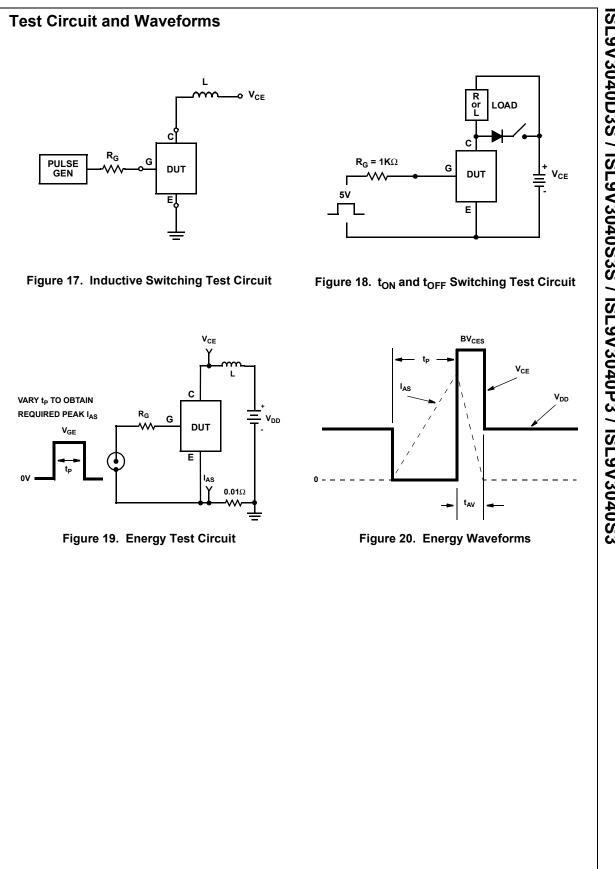

Device Maximum Ratings T_A = 25°C unless otherwise noted

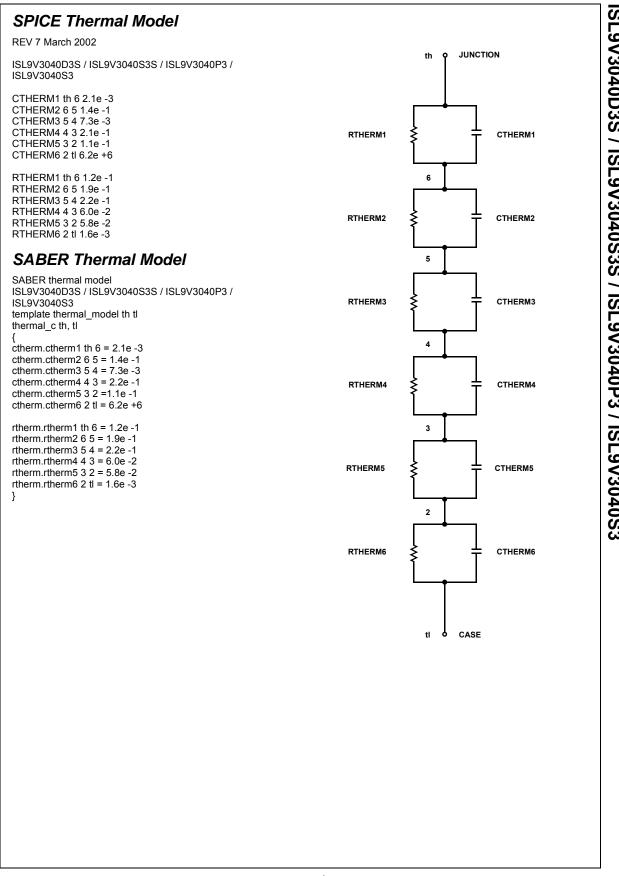
Symbol	Parameter	Ratings	Units V	
BV _{CER}	Collector to Emitter Breakdown Voltage (I _C = 1 mA)	430		
BV _{ECS}	Emitter to Collector Voltage - Reverse Battery Condition (I _C = 10 mA)	24	V	
E _{SCIS25}	At Starting T_J = 25°C, I_{SCIS} = 14.2A, L = 3.0 mHy	300	mJ	
E _{SCIS150}	At Starting T_J = 150°C, I_{SCIS} = 10.6A, L = 3.0 mHy	170	mJ	
I _{C25}	Collector Current Continuous, At T _C = 25°C, See Fig 9	21	Α	
I _{C110}	Collector Current Continuous, At T _C = 110°C, See Fig 9	17	Α	
V _{GEM}	Gate to Emitter Voltage Continuous	±10	V	
P _D	Power Dissipation Total T _C = 25°C	150	W	
	Power Dissipation Derating T _C > 25°C	1.0	0°\W C C C C	
Τ _J	Operating Junction Temperature Range	-40 to 175		
T _{STG}	Storage Junction Temperature Range	-40 to 175		
ΤL	Max Lead Temp for Soldering (Leads at 1.6mm from Case for 10s)	300		
T _{pkg}	Max Lead Temp for Soldering (Package Body for 10s)	260	°C	
ESD	Electrostatic Discharge Voltage at 100pF, 1500 Ω	4	kV	


Device Marking		Device F		ackage	Reel Size	Tape Width		Quantity	
V3040D		ISL9V3040D3ST	TC	D-252AA 330mm		16mm		2500	
V3040S		ISL9V3040S3ST	TC	D-263AB	330mm	24mm		800	
V3040P		ISL9V3040P3	TC	D-220AB	Tube		N/A		50
V3040S		ISL9V3040S3		D-262AA Tube			N/A		50
V3040D		ISL9V3040D3S		D-252AA Tube		N/A		75	
V304		ISL9V3040S3S	1	D-263AB	Tube		N/A		50
		racteristics T _A = 25	5°C un				-		
Symbol f Stato	Charact	Parameter eristics		Test Con	ditions	Min	Тур	Мах	Units
BV _{CER}	-	r to Emitter Breakdown Vo	Itano	I _C = 2mA, V _{GE}	= 0	370	400	430	V
DVCER	Collector	Celor to Emilier Dreakdown Voltage		$R_G = 1K\Omega$, See Fig. 15 T _J = -40 to 150°C		570	400	430	v
BV _{CES}	Collector to Emitter Breakdown Voltage		ltage	$I_C = 10$ mA, V_{GE} R _G = 0, See F	390	420	450	V	
				T _J = -40 to 150					
BV _{ECS}		nitter to Collector Breakdown Voltage		$I_C = -75$ mA, $V_{GE} = 0$ V, $T_C = 25$ °C		30	-	-	V
BV _{GES}		Emitter Breakdown Voltage		$I_{GES} = \pm 2mA$		±12	±14	-	V
ICER	Collecto	r to Emitter Leakage Curre	ent	V _{CER} = 250V,	T _C = 25°C	-	-	25	μA
				$R_G = 1K\Omega$ See Fig. 11	T _C = 150°C	-	-	1	mA
IECS	Emitter t	o Collector Leakage Curre	ent	V _{EC} = 24V, See Fig. 11		-	-	1	mA
D	Corico C	ata Dagiatanga		1.9.11	T _C = 150°C	-	-	40	mA
R ₁ R ₂		Series Gate Resistance Gate to Emitter Resistance				- 10K	70	- 26K	Ω Ω
-						TUR	-	201	52
				1 - 64	T - 25°0		4.05	1.00	V
V _{CE(SAT)}		r to Emitter Saturation Volt	-	I _C = 6A, V _{GE} = 4V	T _C = 25°C, See Fig. 3	-	1.25	1.60	V
V _{CE(SAT)}		r to Emitter Saturation Volt	-	I _C = 10A, V _{GE} = 4.5V	T _C = 150°C, See Fig. 4	-	1.58	1.80	V
V _{CE(SAT)}	Collecto	r to Emitter Saturation Volt	age	I _C = 15A, V _{GE} = 4.5V	T _C = 150°C	-	1.90	2.20	V
vnamic	Charact	eristics							
Q _{G(ON)}	Gate Ch	arge		I _C = 10A, V _{CE} = V _{GE} = 5V, See	= 12V, Fig. 14	-	17	-	nC
V _{GE(TH)}	Gate to	Emitter Threshold Voltage		U U	T _C = 25°C	1.3	-	2.2	V
				See Fig. 10	T _C = 150°C	0.75	-	1.8	V
V_{GEP}	Gate to	Emitter Plateau Voltage		I _C = 10A, V _{CE} =	= 12V	-	3.0	-	V
vitching	Charao	cteristics							
t _{d(ON)R}	Current	Turn-On Delay Time-Resis	stive	V _{CE} = 14V, R _L :	= 1Ω,	-	0.7	4	μs
t _{rR}	Current	Rise Time-Resistive		$V_{GE} = 5V, R_G = 1K\Omega$ T _J = 25°C, See Fig. 12		-	2.1	7	μs
t _{d(OFF)L}	Current	Turn-Off Delay Time-Induc	tive	V _{CE} = 300V, L =			4.8	15	μs
t _{fL}	Current	Fall Time-Inductive		V _{GE} = 5V, R _G = 1KΩ T _J = 25°C, See Fig. 12		-	2.8	15	μs
SCIS	Self Cla	Self Clamped Inductive Switching		$T_J = 25^{\circ}$ C, L = 3.0 mHy, R _G = 1K Ω , V _{GE} = 5V, See Fig. 1 & 2		-	-	300	mJ
ermal C	haract	eristics							
$R_{ extsf{ heta}JC}$		Resistance Junction-Case		All packages		-	-	1.0	°C/W

ISL9V3040D3S / ISL9V3040S3S / ISL9V3040P3 / ISL9V3040S3




www.onsemi.com 3


www.onsemi.com 4

www.onsemi.com 5

ISL9V3040D3S / ISL9V3040S3S / ISL9V3040P3 / ISL9V3040S3

ISL9V3040D3S / ISL9V3040S3S / ISL9V3040P3 / ISL9V3040S3

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative