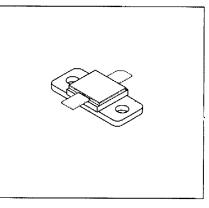
20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

The RF Line Microwave Long Pulse Power Transistor


Designed for 960–1215 MHz long or short pulse common base amplifier applications such as JTIDS and Mode–S transmitters.

- Guaranteed Performance @ 960 MHz, 36 Vdc Output Power = 30 Watts Peak Minimum Gain = 9.0 dB Min (9.5 dB Typ)
- 100% Tested for Load Mismatch at All Phase Angles with 10:1 VSWR
- · Hermetically Sealed Industry Standard Package
- Silicon Nitride Passivated
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration
- Internal Input Matching for Broadband Operation

TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

MRF10031

30 W (PEAK) 960–1215 MHz MICROWAVE POWER TRANSISTOR NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CES}	55	Vdc
Collector-Base Voltage (1)	V _{CBO}	55	Vdc
Emitter-Base Voltage	V _{EBO}	3.5	Vdc
Collector Current — Continuous (1)	IC	3.0	Adc
Total Device Dissipation @ T _C = 25°C (1), (2) Derate above 25°C	PD	110 0.625	Watts mW/⁻C
Storage Temperature Range	T _{stg}	- 65 to + 200	°C
Junction Temperature	Ťj	200	- C

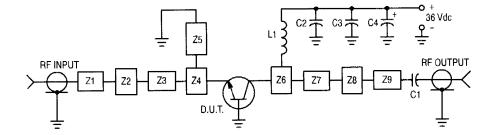
THERMAL CHARACTERISTICS

Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction to Case (3)	$R_{ extsf{ heta}JC}$	1.6	°C/W

NOTES

1. Under pulse RF operating conditions.

- 2. These devices are designed for RF operation. The total device dissipation rating applies only when the devices are operated as pulsed RF amplifiers.
- Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques. (Worst case θ_{JC} value measured @ 23% duty cycle)



NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
DFF CHARACTERISTICS					
Collector–Emitter Breakdown Voltage (I _C = 25 mAdc, V _{BE} = 0)	V _{(BR)CES}	55	—	—	Vdc
Collector–Base Breakdown Voltage ($I_c = 25 \text{ mAdc}, I_E = 0$)	V _{(BR)CBO}	55	—		Vdc
Emitter-Base Breakdown Voltage (I _E = 5.0 mAdc, I _C = 0)	V _{(BR)EBO}	3.5			Vdc
Collector Cutoff Current (V_{CB} = 36 Vdc, I_E = 0)	I _{CBO}	_	—	2.0	mAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 500 mAdc, V _{CE} = 5.0 Vdc)	h _{FE}	20			
FUNCTIONAL TESTS (10 µs Pulses @ 50% duty cycle for 3.5 m	s; overall duty cyc	le – 25%)			
Common–Base Amplifier Power Gain (V _{CC} = 36 Vdc, P _{out} = 30 W Peak, f = 960 MHz)	G _{PB}	9.0	9.5	-	dB
Collector Efficiency (V _{CC} = 36 Vdc, P _{out} = 30 W Peak, f = 960 MHz)	η	40	45	_	%
Load Mismatch (V _{CC} = 36 Vdc, P _{out} = 30 W Peak, f = 960 MHz, VSWR = 10:1 All Phase Angles)	Ψ	No Degradation in Output Power			

- C1 75 pF 100 Mil Chip Capacitor C2 39 pF 100 Mil Chip Capacitor $C3 - 0.1 \, \mu F$

C4 — 1000 $\mu\text{F},$ 50 Vdc, Electrolytic L1 — 3 Turns #18 AWG, 1/8″ ID, 0.18 Long

Z1-Z9 --- Microstrip, See Details Board Material - Teflon, Glass Laminate Dielectric Thickness = 0.030" ε_r = 2.55, 2 Oz. Copper

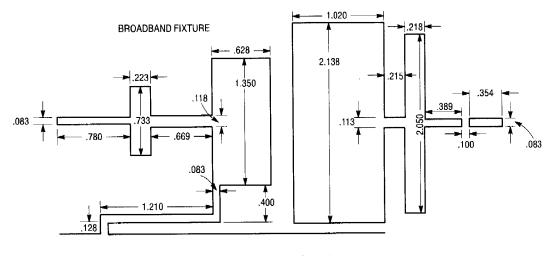


Figure 1. Test Circuit