
20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

> The RF Line **NPN Silicon RF Power Transistor**

Designed for 26 Volt UHF large-signal, common emitter, Class AB linear amplifier applications in industrial and commercial FM/AM equipment operating in the range 800-960 MHz.

- Specified 26 Volt, 900 MHz Characteristics Output Power = 150 Watts (PEP) Minimum Gain = 8.0 dB @ 900 MHz, Class AB Minimum Efficiency = 35% @ 900 MHz, 150 Watts (PEP) Maximum Intermodulation Distortion -28 dBc @ 150 Watts (PEP)
- Characterized with Series Equivalent Large-Signal Parameters from 800 to 960 MHz
- Silicon Nitride Passivated ٠
- 100% Tested for Load Mismatch Stress at all Phase Angles with 5:1 VSWR @ 26 Vdc, and Rated Output Power
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

TELEPHONE: (973) 376-2922

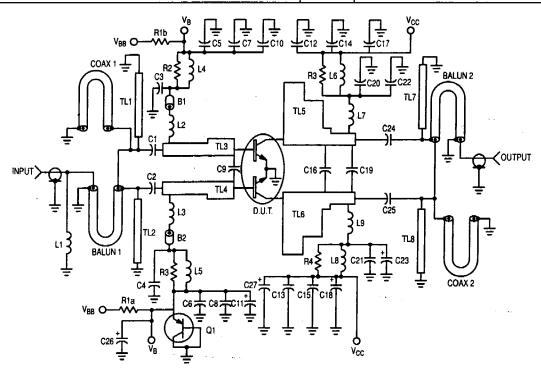
(212) 227-6005

FAX: (973) 376-8960

CASE 375A-01, STYLE 1

MAXIMUM RATINGS

Rating		Symbol	Value		Unit
Collector-Emitter Voltage		VCEO	28		Vdc
Collector-Emitter Voltage		VCES	60		Vdc
Emitter-Base Voltage		VEBO	4.0		Vdc
Collector-Current Continuous		lc	25		Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C		PD	230 1.33		Watts W/°C
Storage Temperature Range			-65 to +150		°C
THERMAL CHARACTERISTICS		·			
Characteristic		Symbol	Max		Unit
Thermal Resistance, Junction to Case		R _{eJC}	0.75		°c/w
LECTRICAL CHARACTERISTICS (T _C = 25°C unless otherwise	noted.)	·			
Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		1 <u>, , 1</u>		1	- <u>-</u>
Collector-Emitter Breakdown Voltage (I _C = 100 mAdc, I _B = 0)	V(BR)CEO	28	37	- 1	Vdc
Collector-Emitter Breakdown Voltage (I _C = 50 mAdc, V _{BE} = 0)	V(BR)CES	60	85	- 1	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 mAdc, I _C = 0)	V _{(BR)EBO}	4.0	4.9		Vdc
Collector Cutoff Current (V _{CE} = 30 Vdc, V _{BE} = 0)	ICES	_		10	mAdc
N CHARACTERISTICS		L		I	
DC Current Gain (I _{CE} = 1.0 Adc, V _{CE} = 5.0 Vdc)	h _{FE}	30	75	120	
YNAMIC CHARACTERISTICS				I	
Output Capacitance (V _{CB} = 26 Vdc, I _E = 0, f = 1.0 MHz) (1)	Cob		75		pF
For information only. This part is collector matched.					(continue



NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

Characteristic	Symbol	Min	Тур	Max	Unit	
FUNCTIONAL CHARACTERISTICS			•	• •		
Common-Emitter Amplifier Power Gain V_{CC} = 26 Vdc, P_{out} = 150 Watts (PEP), I_{cq} = 300 mA, f_1 = 900 MHz, f_2 = 900.1 MHz	G _{pe}	8.0	9.0	-	dB	
Collector Efficiency V_{CC} = 26 Vdc, P_{out} = 150 Watts (PEP), I_{cq} = 300 mA, f_1 = 900 MHz, f_2 = 900.1 MHz	η	30	40		%	
3rd Order Intermodulation Distortion V_{CC} = 26 Vdc, P _{out} = 150 Watts (PEP), I _{cq} = 300 mA, f ₁ = 900 MHz, f ₂ = 900.1 MHz	IMD		-32	-28	dBc	
Output Mismatch Stress $V_{CC} = 26$ Vdc, $P_{out} = 150$ Watts (PEP), $I_{cq} = 300$ mA, $f_1 = 900$ MHz, $f_2 = 900.1$ MHz, VSWR = 5:1 (all phase angles)	Ψ	No Degradation in Output Power Before and After Test				

ELECTRICAL CHARACTERISTICS - continued (T_C = 25°C unless otherwise noted.)

B1, B2 - Ferrite Bead, Ferroxcube #56--590-65-3B C1, C2, C24, C25 - 43 pF, B Case, ATC Chip Capacitor C3, C4, C20, C21 — 100 pF, B Case, ATC Chip Capacitor C5, C6, C12, C13 — 1000 pF, B Case, ATC Chip Capacitor C7, C8, C14, C15 — 1800 pF, AVX Chip Capacitor C9 - 9.1 pF, A Case, ATC Chip Capacitor C10, C11, C17, C18, C22, C23 - 10 µF, Electrolytic Capacitor Panasonic C16 — 3.9 pF, B Case, ATC Chip Capacitor C19 — 0.8 pF, B Case, ATC Chip Capacitor

 $C26-200\ \mu\text{F},$ Electrolytic Capacitor Mallory Sprague C27 $-500\ \mu\text{F}$ Electrolytic Capacitor

L1 --- 5 Turns 24 AWG IDIA 0.059" Choke, 19.8 nH L2, L3, L7, L9 — 4 Turns 20 AWG IDIA 0.163" Choke L4, L5, L6, L8 — 12 Turns 22 AWG IDIA 0.140" Choke N1, N2 — Type N Flange Mount, Omni Spectra Q1 - Bias Transistor BD136 PNP R2, R3, R4, R5 - 4.0 x 39 Ohm 1/8 W Chips in Parallel R1a, R1b - 56 Ohm 1.0 W TL1-TL8 --- See Photomaster Balun1, Balun2, Coax 1, Coax 2 - 2.20" 50 Ohm 0.088" o.d. Semi-rigid Coax, Micro Coax

Board — 1/32" Glass Teflon, ϵ_r = 2.55" Arlon (GX–0300–55–22)

Figure 1. 900 MHz Power Gain Test Circuit