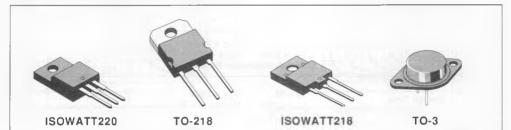


FASTSWITCH HOLLOW-EMITTER NPN TRANSISTORS

- HIGH SWITCHING SPEED NPN POWER TRANSISTORS
- HOLLOW EMITTER TECHNOLOGY
- HIGH VOLTAGE FOR OFF-LINE APPLICA-TIONS
- 50kHz SWITCHING SPEED
- LOW COST DRIVE CIRCUITS
- LOW DYNAMIC SATURATION


APPLICATIONS

- SMPS
- **TV HORIZONTAL DEFLECTION**

DESCRIPTION

Hollow emitter FASTSWITCH NPN power transistors are specially designed for 220V (and 117V with input doubler) off-line switching power supply and colour CRT deflection applications. High voltage hollow emitter transistors can operate up to 50kHz with simple drive circuits which helps to simplify design and improve reliability. These transistors are suitable for application in flyback and forward low power converters, 120W to 240W. Their high voltage rating can be used to advantage as it allows a costly transformer clamp winding or over voltage snubbers to be omitted. When used in conjuction with a low Power MOSFET in emitter switch configuration, they can operate at over 100kHz.

These hollow emitter FASTSWITCH transistors are available in TO-218, and fully isolated ISOWATT220 and ISOWATT218 packages. The ISOWATT218 conforms to the creepage distance and isolation requirements of VDE, IEC, and UL specifications. Additionally these FASTSWITCH transistors are available in metal TO-3 packages.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	SGS				
	Parameter	IF345	F445	IF445	F545	Unit
VCES	Collector - Emitter Voltage (V _{BE} = 0)		1300			V
V _{CEO}	Collector - Emitter Voltage (I _B = 0)		600			
VEBO	Emitter - Base Voltage (I _C = 0)	7			V	
1c	Collector Current	7			A	
Ісм	Collector Peak Current (tp < 5ms)	12			A	
B	Base Current		5			A
IBM	Base Peak Current (tp < 5ms)	8			A	
Ptot	Total Dissipation at $T_c \le 25^{\circ}C$	40	95	55	115	W
Tstg	Storage Temperature - 65 to	150	150	150	175	°C
T,	Junction Temperature	150	150	150	175	°C

SGSIF345-SGSF445-SGSIF445-SGSF545

THERMAL DATA

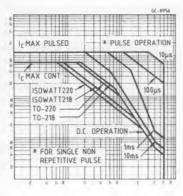
			SGS				
			IF345	F445	IF445	F545	
R _{thj-case}	Thermal Resistance Junction-case	Max	3.12	1.31	2.27	1.3	°C/W

ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise specified)

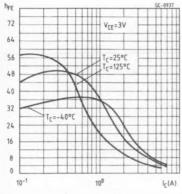
Symbol	Parameter	Test Conditions V _{CE} = 1300V		Min.	Тур.	Max. 200	Unit
ICES	Collector Cutoff Current (V _{BE} = 0)						μA
ICEO	Collector Cutoff Current (I _B = 0)	$V_{CE} = 380V$ $V_{CE} = 600V$			-	200 2	μA mA
IEBO	Emitter Cutoff Current $(I_C = 0)$	$V_{EB} = 7V$				1	mA
V _{CEO (sus)} *	Collector Emitter Sustaining Voltage	I _C = 0.1A		600			V
V _{CE (sat)*}	Collector Emitter Saturation Voltage	0	0.6A 0.3A			1.5 1.5	V V
VBE (sat)*	Base Emitter Saturation Voltage	$I_{C} = 3A \qquad I_{B} = I_{C} = 2A \qquad I_{B} =$	0.6A 0.3A			1.5 1.5	V V

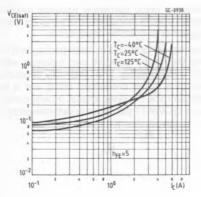
RESISTIVE LOAD

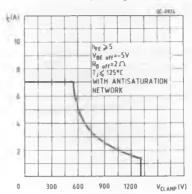
Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
ton	Turn-on Time		$V_{CC} = 250V$ $I_{B2} = -2I_{B1}$		0.7	1.2	μs
ts	Storage Time	$l_{\rm C} = 3A$			2.2	3.5	μs
tr	Fall Time				0.18	0.3	μs
ton	Turn-on Time	I _{B1} = 0.6A	$V_{CC} = 250V$ $I_{B2} = -2I_{B1}$ uration Network		0.7		μs
ts	Storage Time				1.5		μs
tr	Fall Time				0.2		μs
ton	Turn-on Time		$V_{CC} = 250V$ $V_{BE(off)} = -5V$		0.7		μs
ts	Storage Time	$I_{\rm C} = 3A$ $I_{\rm B1} = 0.6A$			1		μs
t _f	Fall Time	181 - 0.04			0.2		μs

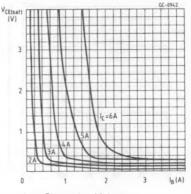

INDUCTIVE LOAD

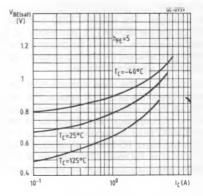
Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
ts	Storage Time	$I_{\rm C} = 3A$	$h_{FE} = 5$		1.4	2.8	μs
tr	Fall Time	- V _{CL} = 450V L = 300μH	$V_{BE(off)} = -5V$ $R_{B(off)} = 1.2\Omega$		0.1	0.2	μs
ts	Storage Time	$I_{C} = 3A$ $V_{CL} = 450V$ $L = 300\mu H$ $T_{c} = 100^{\circ}C$	$h_{FE} = 5$ $V_{BE(off)} = -5V$ $R_{B(off)} = 1.2\Omega$	_		4	μs
tŗ	Fall Time					0.3	μs


Pulsed : Pulse duration = 300µs, duty cycle = 1.5%

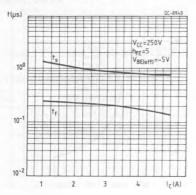

Safe Operating Areas


DC Current Gain

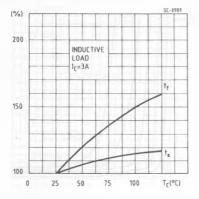

Collector-emitter Saturation Voltage


Reverse Biased Safe Operating Area

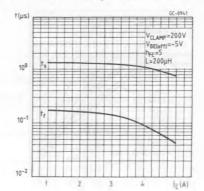
Collector-emitter Saturation Voltage



Base-emitter Saturation Voltage



SGSIF345-SGSF445-SGSIF445-SGSF545


Resistive Load Switching Times

Switching Times Percentance Variation

Inductive Load Switching Times

ISOWATT PACKAGES CHARACTERISTICS AND APPLICATION

The ISOWATT220 and ISOWATT218 are fully isolated packages. The ISOWATT220 is isolated to 2000V dc and the ISOWATT218 to 4000V dc. Their thermal impedence, given in the datasheet, is optimised to give efficient thermal conduction together with excellent electrical isolation.

The structure of the case ensures optimum ditances between the pins and heatsink. For the ISO-WATT218 these distances are in agreement with VDE and UL creepage and clearance standards. The ISOWATT218 is supplied with longer leads than the standard TO-218 to allow easy mounting on PCB's. The ISOWATT220 and ISOWATT218 packages eliminate the need for external isolation so reducing fixing hardware. Accurate moulding techniques used in manufacture assures consistent heat spreader-to-heatsink capacitance.

The thermal performance of these packages is better than that of the standard part mounted with a 0.1mm mica washer. The thermally conductive plastic has a higher breakdown rating and is less fragile than mica or plastic sheets. Power derating for these ISOWATT packages is determined by :

$$P_D = \frac{T_j - T_c}{R_{tb}}$$

THERMAL IMPEDANCE OF ISOWATT PACKAGES

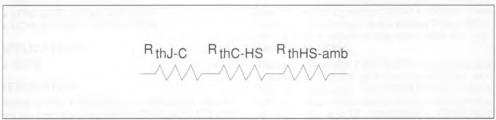
Fig. 1 illustrates the elements contributing to the thermal resistance of a transistor heatsink assembly, using ISOWATT packages.

The total thermal resistance $R_{th(tot)}$ is the sum of each of these elements. The transient thermal impedance, Z_{th} for different pulse durations can be estimated as follows :

1 - For a short duration power pulse of less than 1ms :

 $Z_{th} < R_{thJ-C}$

Figure 1.


2 - For an intermediate power pulse of 5ms to 50ms seconds :

 $Z_{th} = R_{thJ-C}$

3 - For long power pulses of the order of 500ms seconds or greater :

Zth = RthJ-C + RthC-HS + RthHS-amb

It is often possible to discern these areas on transient thermal impedance curves.

