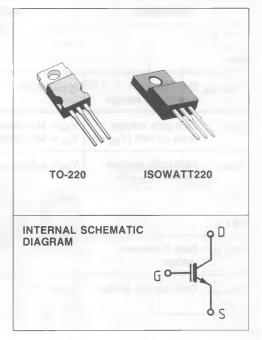
STHI07N50 STHI07N50FI

HIGH INJECTION N-CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTORS (IGBT)

PRELIMINARY DATA

ТҮРЕ	V _{DSS}	I _D
STHI07N50	500 V	7 A
STHI07N50FI	500 V	7 A


SGS-THOMSON MICROELECTRONICS

- HIGH INPUT IMPEDANCE
- LOW ON-VOLTAGE
- HIGH CURRENT CAPABILITY

APPLICATIONS:

- AUTOMOTIVE IGNITION
- DRIVERS FOR SOLENOIDS AND RELAYS

N - channel High Injection POWER MOS transistors (IGBT) which features a high impedance insulated gate input and a low on-resistance characteristic of bipolar transistors. This low resistance is achieved by conductivity modulation of the drain. These devices are particularly suited to automative ignition switching. They can also be used as drivers for solenoids and relays.

ABSOLUTE MAXIMUM RATINGS

V _{DS}	Drain-source voltage ($V_{GS} = 0$)	5	500	V
V _{GS}	Gate-source voltage	F	⊧20	V
I _D (*)	Drain current (contin.) at T _c = 25°C		7	А
I _{DM}	Drain current (pulsed)		20	А
		STHI07N50	STHI07N5	OFI
P _{tot}	Total dissipation at $T_c < 25^{\circ}C$	100	35	W
	Derating factor	0.8	0.28	W/°C
T _{stg}	Storage temperature	-65	to 150	°C
Tj	Max. operating junction temperature	1	150	°C

(*) Pulse width limited by safe operating area

STHI07N50 - STHI07N50FI

THERMAL DATA -	то	-220	ISOWATT220	
R _{thj - case} Thermal resistance junction-case	max	1.25	3.6	°C/W

ELECTRICAL CHARACTERISTICS ($T_j = 25^{\circ}C$ unless otherwise specified)

Parameters	Test Conditions	Min.	Тур.	Max.	Unit
------------	-----------------	------	------	------	------

OFF

V _(BR) DSS	Drain-source breakdown voltage	$I_{\rm D} = 250 \ \mu {\rm A}$ $V_{\rm GS} = 0$	500	_		V
I _{DSS}	Zero gate voltage drain current ($V_{GS} = 0$)	V_{DS} = Max Rating V_{DS} = Max Rating × 0.8 T _j = 125°C			250 1000	μΑ μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	$V_{GS} = \pm 20 V$			± 100	nA

ON (*)

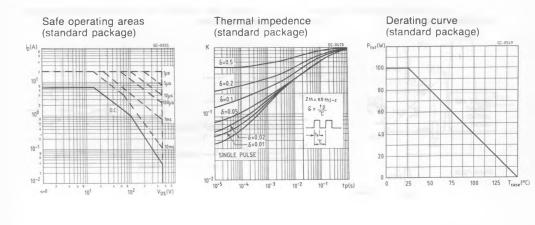
V _{GS (th)}	Gate threshold voltage	$V_{DS} = V_{GS}$	I _D = 250 μA	2	4	V
V _{DS (on)}	Drain-source voltage	$V_{GS} = 10 V$	I _D = 7 A		2.7	V

DYNAMIC

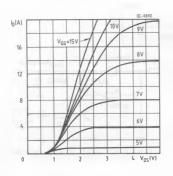
9 _{ts}	Forward transconductance	$V_{DS} = 20 V$	$I_D = 7 A$	2.5			mho
C _{ISS} C _{OSS} C _{rSS}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 25 V$ $V_{GS} = 0$	f= 1 MHz		850 90 40	950 140 80	pF pF pF

SWITCHING

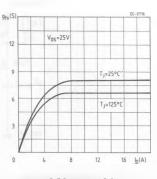
ELECTRICAL CHARACTERISTICS (Continued)

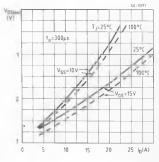

Parameters Test Conditions	Min.	Тур.	Max.	Unit	
----------------------------	------	------	------	------	--

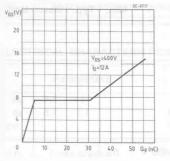
SWITCHING (continued)


$\begin{array}{c c} & \text{INDUCTIVE LOAD} \\ t_{d \ (off)} & \text{Turn-off delay time} \\ t_{f} & \text{Fall time} \end{array}$	$V_{DD} = 12 V$ $V_{DS \ clamp} = 350 V$ $V_{GS} = 10 V$ L = 10 mH	$I_D = 7 A$ $R_g = 100 Ω$ $T_j = 100°C$		1 1.1	1.4 1.5	μS μS
USE TEST	$V_{CC} = 14 V$ L = 7 mH	V _{DS clamp} = 400 V	6			A

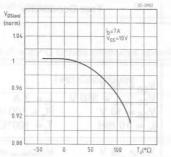
(*) Pulsed: Pulse duration = 300 μ s, duty cycle 1,5%


See note on ISOWATT220 or this datasheet

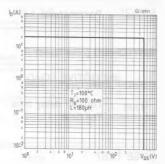

Output characteristics

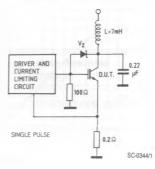


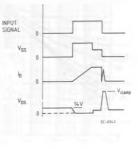
Static drain-souce on voltage

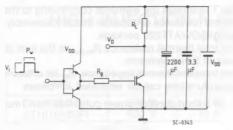


STHI07N50 - STHI07N50FI

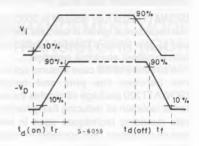

Gate charge vs gate-source voltage


Normalized on voltage vs temperature

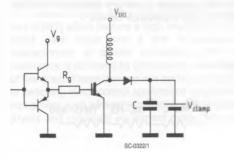

Reverse biased SOA


Functional test circuit

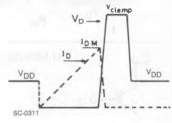
Functional test waveforms

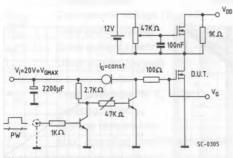


Switching times test circuit for resistive load



Pulse width $\leq 100 \ \mu s$ Duty cycle $\leq 2\%$


Switching time waveforms for resistive load


Clamped inductive load and RBSOA test circuit

Gate charge test circuit

PW adjusted to obtain required VG

ISOWATT220 PACKAGE CHARACTERISTICS AND APPLICATION.

ISOWATT220 is fully isolated to 2000V dc. Its thermal impedance, given in the data sheet, is optimised to give efficient thermal conduction together with excellent electrical isolation.

The structure of the case ensures optimum distances between the pins and heatsink. The ISOWATT220 package eliminates the need for external isolation so reducing fixing hardware. Accurate moulding techniques used in manufacture assure consistent heat spreader-to-heatsink capacitance.

ISOWATT220 thermal performance is better than that of the standard part, mounted with a 0.1mm mica washer. The thermally conductive plastic has a higher breakdown rating and is less fragile than mica or plastic sheets. Power derating for ISOWATT220 packages is determined by:

$$P_{\rm D} = \frac{T_{\rm j} - T_{\rm c}}{R_{\rm th}}$$

THERMAL IMPEDANCE OF ISOWATT220 PACKAGE

Fig. 1 illustrates the elements contributing to the thermal resistance of transistor heatsink assembly, using ISOWATT220 package.

The total thermal resistance $R_{th (tot)}$ is the sum of each of these elements.

The transient thermal impedance, Z_{th} for different pulse durations can be estimated as follows:

1 - for a short duration power pulse less than 1ms;

$$Z_{th} < R_{thJ-C}$$

2 - for an intermediate power pulse of 5ms to 50ms:

$$Z_{th} = R_{thJ-C}$$

3 - for long power pulses of the order of 500ms or greater:

$$Z_{th} = R_{thJ-C} + R_{thC-HS} + R_{thHS-amb}$$

It is often possibile to discern these areas on transient thermal impedance curves.

Fig. 1

RthJ-C RthC-HS RthHS-amb

ISOWATT DATA

Safe operating areas Thermal impedance Derating curve Ptot(W) 50 10 40 30 20 107 10 10 25 50 75 100 125 10 tols 10 10 6/6 SGS-THOMSON